Mladen Vassilev-Missana

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 16, 2010, Number 3, Pages 18—24

**Download full paper: PDF, 223 Kb**

## Details

### Authors and affiliations

Mladen Vassilev-Missana

*5, V. Hugo Str., Sofia-1124, Bulgaria*

### Abstract

In the paper the infinite power towers which are generated by an algebraic numbers belonging to the closed interval are investigated and an answer is given to the question when they are transcendental or rational numbers. Also a necessary condition for an infinite power tower to be an irrational algebraic number is proposed.

### Keywords

- Infinite power tower
- Algebraic number
- Transcendental number

### References

- Baker, A. Transcendental Number Theory. London, Cambridge University Press, 1990.
- Vassilev-Missana, M. A short remark on transcendental numbers. Notes on Number Theory and Discrete Mathematics, Vol. 14, No. 4, 2008, 1-3.
- Shkliarski D., N. Chentzov, I. Yaglom. The USSR Olympiad Problem Book: Selected Problems and Theorems of Elementary Mathematics, New York, Dover Publications, 1993.

## Related papers

## Cite this paper

APAVassilev-Missana, M. (2010). Some results on infinite power towers. Notes on Number Theory and Discrete Mathematics, 16(3), 18-24.

ChicagoVassilev-Missana, Mladen. “Some Results on Infinite Power Towers.” Notes on Number Theory and Discrete Mathematics 16, no. 3 (2010): 18-24.

MLAVassilev-Missana, Mladen. “Some Results on Infinite Power Towers.” Notes on Number Theory and Discrete Mathematics 16.3 (2010): 18-24. Print.