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Abstract

In the paper the infinite power towers which are generated by an algebraic numbers

belonging to the closed interval [1, e
1
e ] are investigated and an answer is given to the

question when they are transcendental or rational numbers. Also a necessary condition

for an infinite power tower to be an irrational algebraic number is proposed.
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Below the following variant of Gelfond-Schneider theorem (see[1]) shall be used:

Theorem 1. If a (a 6= 0, 1) is an algebraic number and b is an irrational algebraic number,

then ab is a transcendental number.

Further we shall use the denotation x
√
x for x

1
x (where x

1
x

def
= e

ln x
x ) and as usual e for

John Napier’s number e = 2.71828.... Let us note that e
√
e = 1.44466...

First we need the following:

Lemma 1. Let for every real x ≥ 1

f(x) = x
√
x.

Then the function f has the following properties:

(a) f : (1,+∞)→ (1, e
√
e)

(b) f(1) = 1 ; f(e) = e
√
e; lim

x→+∞
f(x) = 1
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(c) f is a continuous function strictly increasing on the interval (1, e) and strictly decreas-

ing on the interval (e,+∞) and f has an absolute maximum at x = e, i.e. for x ∈ (1, e)

we have:

1 = f(1) < f(x) < f(e) = e
√
e (1)

and for x ∈ (e,+∞) we have

e
√
e = f(e) > f(x) > 1 = lim

x→∞
f(x).

We omit the elementary proof of this lemma.

As an obvious corollary of the above lemma we obtain:

Lemma 2. Let a ∈ (1,+∞) be a real number. Then:

(a) For a ∈ (1, e
√
e) the equation

x
√
x = a (2)

has exactly two different solutions x1 ∈ (1, e) and x2 ∈ (e,+∞).

(b) For a = e
√
e the equation (2) has the unique solution x = e

(c) For a > e
√
e the equation (2) has no solution.

Our first important result in the paper is (see also [2, Theorem 2]):

Theorem 2. Let a ∈ (1, e
√
e) be an algebraic number that cannot be represented in the form

a =
b
√
b (3)

for any rational number b > 1. Then:

(a) The equation

ax = x (4)

has exactly two different solutions: x1 ∈ (1, e) and x2 ∈ (e,+∞);

(b) xi (i = 1, 2) are transcendental numbers;

(c) The algebraic number a admits the following two different representations, using the

transcendental numbers x1 and x2:

a = x1
√
x1 and a = x2

√
x2. (5)
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Proof. We note that (4) is equivalent to (2). Hence (a) immediately follows from Lemma 2 (a).

Let x = b be any solution of (4). Then x = b is a solution of (2) too. Therefore, b

satisfies (3). Hence b is an irrational number because of the condition of the theorem. Let

us assume that b is an algebraic number. Then Theorem 1 yields that ab is a transcendental

number. But

ab = b,

since x = b is a solution of(4). Hence b is a transcendental number too. The last contradicts

to the assumption that b is an algebraic number. Therefore, our assumption that b is an

algebraic number is wrong. Hence b is a transcendental number and (b) is proved.

Now, (c) (in particular(5)) holds from (a) and (b).

The Theorem is proved.

Remark 1. If a > 1 is an algebraic number given by (3), then either b is a rational number

or b is a transcendental number.

Indeed, if we assume that b is an irrational algebraic number, then according to Theorem 1
b
√
b is a transcendental number which means that a is a transcendental number (because of

(3)) in contradiction to the fact that a is an algebraic number.

Let a ≥ 1 be a real number. Then we consider an infinite sequence {Kn(a)}∞n=1 given by

K1(a) = a, Kn+1(a) = aKn(a), for n ≥ 1 (6)

Definition. If there exists lim
n→∞

Kn(a) we denote it by K(a), i.e

K(a)
def
= aa

a.
..

and we call K(a) infinite power tower generated by a.

Let us suppose that for a given a ≥ 1, K(a) exists. Then putting

K(a) = x,

from (6) after passage to the limit, we obtain:

x = ax.

(i.e. (4))

Hence,

a = x
√
x

(i.e. (2))

and from (1) we obtain

a = x
√
x ≤ e
√
e

Therefore, using Lemma 2 (c), we get:
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Lemma 3. Let a ≥ 1 be a real number. Then the necessary condition for the existence of

K(a) is a ∈ [1, e
√
e].

Lemma 3 yields

Corollary 1. For a > e
√
e the infinite power tower K(a) does not exist.

In [2], with the help of Theorem 1, the following result is established:

Theorem 3. Let a ∈ (1, e
√
e) be a real number. Then the infinite power tower K(a) exists,

K(a) belongs to (1, e) and x = K(a) satisfies the equation (2). If a satisfies the conditions

of Theorem 2, then K(a) is a transcendental number.

Remark 2. We note that K(1) = 1 and K( e
√
e) = e.

Thus, the question that remains to be answered is what happens when a ∈ (1, e
√
e) is an

algebraic number which admits the representation

a =
b
√
b,

where b > 1 is a rational number. In this case, from (4) we obtain:

x
√
x =

b
√
b (7)

Further we will consider the following two cases:

Case 1 b ∈ (1, e).

Case 2 b ∈ (e,+∞).

Let Case 1 hold. The following considerations are valid not only for the case when b is

a rational number but also when b is an arbitrary real number. In this case, from (1), (3) ,

Lemma 2 (a) and Theorem 3, it follows that

K(a) =
b
√
b

b√
b
b√
b
..
.

= b (8)

From (8) it is seen that in Case 1 K(a) coincides with the rational number b.

Let Case 2 hold. In this case we have to consider two possibilities for x = K(a) :

(i) x is a rational number belonging to (1, e).

(ii) x is an irrational number belonging to (1, e).

Let (i) hold. Then the equation (7) is satisfied with rational number x ∈ (1, e) and

rational number b ∈ (e,+∞). According to [3, problem 124, p.28] all such rational solutions

of (7) are given by:

x =

(
1 +

1

s

)s

; b =

(
1 +

1

s

)s+1
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s = 1, 2, 3, . . .

Therefore, each one of them is obtained for an appropriate integer s ≥ 1. In this case

a = (1+1
s)

s

√(
1 +

1

s

)s

and

K(a) =

(
1 +

1

s

)s

is a rational number.

If b ∈ (e,+∞) is a rational number that does not belong to the infinite sequence{(
1 + 1

s

)s+1
}∞

s=1
, then x, that satisfies (7), is not a rational number. Therefore, x satis-

fies (ii).

Let (ii) be fulfilled. Then it follows that x is a transcendental number. Indeed, if

we assume that x is an irrational algebraic number, then according to Theorem 1 ax is a

transcendental number and since ax = x, x is a transcendental number too, which contradicts

to the assumption that x is an algebraic number.

So when (ii) holds, K(a) is a transcendental number. Thus we proved the following

Theorem 4. Let b > 1 be a rational number and a = b
√
b. Then:

a) If b ∈ (1, e), then the infinite power tower K(a) is a rational number, and moreover

K(a) = b

b) If b =
(
1 + 1

s

)s+1
for some integer s ≥ 1, then we have b ∈ (e,+∞), a = (1+1

s)
s
√(

1 + 1
s

)s
and the infinite power tower K(a) is a rational number given by:

K(a) =

(
1 +

1

s

)s

c) If b ∈ (e,+∞) and b is not a term of the sequence
{(

1 + 1
s

)s+1
}∞

s=1
, then the infinite

power tower K(a) is a transcendental number.

Now by combining the results from Theorem 3 and Theorem 4 we are ready

to formulate the main result of the paper which gives us the answer what is the

nature of the infinite power tower K(a) when a ∈ (1, e
√
e) is an algebraic number.

Theorem 5. Let a ∈ (1, e
√
e) be an algebraic number. Then:

(a) If a 6= b
√
b for every rational b > 1, then the infinite power tower K(a) is a transcen-

dental number.

(b) If a = b
√
b for some rational number b > 1, then:
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(b1) if b ∈ (1, e), then the infinite power tower K(a) is the rational number b;

(b2) if b ∈ (e,+∞), then

(b21) if b =
(
1 + 1

s

)s+1
for some integer s ≥ 1, then the infinite power tower K(a)

is the rational number
(
1 + 1

s

)s
;

(b22) if b is not a term of the sequence
{(

1 + 1
s

)s+1
}∞

s=1
, then the infinite power

tower K(a) is a transcendental number.

Remark 3. Since K(1) = 1, the infinite power tower K(1) generated by 1 is the rational

number 1. Since, K( e
√
e) = e, (see Remark 2) and e is a transcendental number, the infinite

power tower K( e
√
e) = e is a transcendental number.

Let a ∈ (1, e
√
e) be a transcendental number (the case which is not investigated in Theo-

rem 5). Then we put K(a) = x and the equality (2) yields that x is not a rational number.

Therefore, in this case the infinite power tower K(a) is an irrational algebraic number or a

transcendental number.

Thus we obtain

Corollary 2. A necessary condition for the infinite power tower K(a) to be irrational alge-

braic number is a ∈ (1, e
√
e] to be a transcendental number.

Remark 4. Thus we see that if a is an algebraic number then the infinite power

tower K(a) can not be irrational algebraic number and if a is a transcendental

number then the infinite power tower K(a) cannot be a rational number.

As a corollary from the results in the paper we obtain that

√
2
√
2
√
2
..
.

=
4
√

4
4√4

4√4
..
.

= 2

and for every integer n different from 1, 2 and 4 the infinite power tower

n
√
n

n√n
n√n

..
.

is a transcendental number. In particular

3
√

3
3√3

3√3
..
.

is a transcendental number.

Finally, in the present paper an answer has been given to the Open Problem from [2]: To

describe all rational numbers a ∈ (1, e) and b ∈ (e,+∞) which are solutions of the equation:

a
√
a =

b
√
b.

Namely, all rational solutions (of the above type ) of the above equation are given by:

a =

(
1 +

1

s

)s

, b =

(
1 +

1

s

)s+1

, s = 1, 2, 3, . . .
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