J. V. Leyendekkers, J. M. Rybak and A. G. Shannon

Notes on Number Theory and Discrete Mathematics, ISSN 1310-5132

Volume 3, 1997, Number 3, Pages 173—175

**Download full paper: PDF, 89 Kb**

## Details

### Authors and affiliations

J. V. Leyendekkers

*The University of Sydney, 2006, Australia
*

J. M. Rybak

*The University of Sydney, 2006, Australia
*

A. G. Shannon

*University of Technology, Sydney, 2007, Australia*

### Abstract

Fermat used the method of infinite descent to show that the area of a Pythagorean triangle can never be a square. Here we use the modular ring ℤ_{6} [1] to obtain the same result.

### References

- J.V. Leyendekkers, J.M. Rybak and A.G. Shannon, Integer Class Properties Associated with an integer Matrix. Notes on Number Theory and Discrete Mathematics, 1, 2, 1995, 53-59.
- J.V. Leyendekkers and J.M. Rybak, The generation and analysis of Pythagorean triples within a two-parameter grid. International Journal of Mathematical Education in Science and Technology 26, 6, 1995, 787-793.

## Related papers

## Cite this paper

APALeyendekkers, J. V., Rybak, J. M. & Shannon, A. G. (1997). The modular ring ℤ_{6} and the area of a Pythagorean triangle. Notes on Number Theory and Discrete Mathematics, 3(3), 173-175.

Leyendekkers, J. V., Rybak, J. M. & Shannon, A. G. “The modular ring ℤ_{6} and the area of a Pythagorean triangle.” Notes on Number Theory and Discrete Mathematics 3, no. 3 (1997): 173-175.

Leyendekkers, J. V., Rybak, J. M. & Shannon, A. G. “The modular ring ℤ_{6} and the area of a Pythagorean triangle.” Notes on Number Theory and Discrete Mathematics 3.3 (1997): 173-175. Print.