J. M. Rybak, J. V. Leyendekkers and A. G. Shannon

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132

Volume 1, 1995, Number 2, Pages 53—59

**Download full paper: PDF, 3.9 Mb**

## Details

### Authors and affiliations

J. M. Rybak

*The University of Sydney, 2006, Australia*

J. V. Leyendekkers

*The University of Sydney, 2006, Australia*

A. G. Shannon

*University of Technology, Sydney, 2007, Australia*

### Abstract

This paper displays some old results in a new way and extends them in the context of the modular ring Z_{6}. Various Diophantine properties of an integer matrix modulo 6 are developed in a natural way from tables of the basic binary operations.

### References

- P. Hillman and G. L. Alexanderson, A First Undergraduate Course in Abstract Algebra, Wadsworth, Belmont, 1973.
- Hunter, Number Theory, Oliver and Boyd, Edinburgh, 1964.
- V. Leyendekkers and J. M. Rybak The generation and analysis of Pythagorean triples within a two-parameter grid. International Journal of Mathematical Education in Science and Technology, in press.
- M. Rybak, J. V Leyendekkers and A. G. Shannon, Recurrence relation analysis of Pythagorean triple patterns. Notes on Number Theory and Discrete Mathematics, 1, 1, 1995, 1-10.

## Related papers

- Leyendekkers, J. V., Rybak, J. M. & Shannon, A. G. (1997). The modular ring ℤ
_{6}and the area of a Pythagorean triangle. Notes on Number Theory and Discrete Mathematics, 3(3), 173-175.

## Cite this paper

APARybak, J. M., Leyendekkers, J. V., & Shannon, A. G. (1995). Integer class properties associated with an integer matrix. Notes on Number Theory and Discrete Mathematics, 1(2), 53-59.

ChicagoRybak, J. M., J. V. Leyendekkers and A. G. Shannon “Integer Class Properties Associated with an Integer Matrix.” Notes on Number Theory and Discrete Mathematics 1, no. 2 (1995): 53-59.

MLARybak, J. M., J. V. Leyendekkers and A. G. Shannon “Integer Class Properties Associated with an Integer Matrix.” Notes on Number Theory and Discrete Mathematics 1.2 (1995): 53-59. Print.