Some characteristics of primes within modular rings

J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics, ISSN 1310–5132
Volume 9, 2003, Number 3, Pages 49–58
Full paper (PDF, 3999 Kb)

Details

Authors and affiliations

J. V. Leyendekkers
The University of Sydney, 2006 Australia

A. G. Shannon
Warrane College, The University of New South Wales, 1465,
& KvB Institute of Technology, North Sydney, 2060, Australia

Abstract

The squares of primes in the Modular Ring Z_4 fall in even rows, R_1, in Class \overline{1}_4 with R_1 = 6 K_j and K_j = \frac{1}{2} n (3n \pm 1) (depending on the parity of j). The n values are found to equal the rows that the primes occupy when Z_6 is set as a tabular array. The primes in Z_4 equal a unique sum or difference of squares (x^2 \pm y^2) and via n, the (x, y) pairs can be identified within the Z_6 structure. The n values for composites follow well-defined linear functions that permit easy sorting. Finally, the parameter \underline{n} in the well-known function \underline{P} = h 2^{\underline{n}} - 1 has been identified as the row in one or more of the Modular Rings Z_{10}, Z_6 or Z_4 that contains one or more primes.

AMS Classification

  • 11A07
  • 11A41

References

  1. J. V. Leyendekkers, J.M. Rybak & A. G. Shannon. The Characteristics of Primes and Other Integers within the Modular Ring Z4 and in Class ̅14. Notes on Number Theory & Discrete Mathematics. 4(1) 1998: 1-17.
  2. J. V. Leyendekkers, J.M. Rybak & A. G. Shannon. The Characteristics of Primes and Other Integers within the Modular Ring Z4 and in class ̅3. Notes on Number Theory & Discrete Mathematics. 4(1) 1998: 18-37.
  3. J. V. Leyendekkers & A. G. Shannon. An Analysis of Mersenne-Fibonacci and Mersenne-Lucas Primes. Notes on Number Theory & Discrete Mathematics. 5(1) 1999: 1-26.
  4. J. V. Leyendekkers & A. G. Shannon. The Goldbach Conjecture Primes within a Modular Ring. Notes on Number Theory & Discrete Mathematics. 6(4) 2000: 101-112.
  5. J. V. Leyendekkers & A. G. Shannon. Twin Primes and the Modular Ring Z6. Notes on Number Theory & Discrete Mathematics. 7(4) 2001: 115-124.
  6. J. V. Leyendekkers & A. G. Shannon. An Analysis of Twin Primes h2n −1 Using Modular Rings Z6 and Z4. Notes on Number Theory & Discrete Mathematics. 7(1) 2001:21-28.
  7. J. V. Leyendekkers & A. G. Shannon. A Note on Twin Primes and the Modular Ring Z6. International Journal of Mathematical Education in Science & Technology. 33(2) 2002: 303-306.
  8. J. V. Leyendekkers & A. G. Shannon. Powers as a Difference of Squares: The Effect on Triples. Notes on Number Theory & Discrete Mathematics. 8(3) 2002: 95-106.
  9. J. V. Leyendekkers, J. M. Rybak & A. G. Shannon. Integer Class Properties Associates with an Integer Matrix. Notes on Number Theory & Discrete Mathematics. 1(2) 1995: 53-59.
  10. J. V. Leyendekkers, J. M. Rybak & A. G. Shannon. Analysis of Diophantine Properties Using Modular Rings with Four and Six Classes. Notes on Number Theory & Discrete Mathematics. 3(2) 1997: 61-74.
  11. Hans Riese Prime Numbers and Computer Methods for Factorization. Progress in Mathematics, Volume 126. Boston: Birkhauser, 1994.
  12. H. Beiler. Recreations in the Theory of Numbers. New York: Dover, 1964.

Cite this paper

Leyendekkers, J. V., & Shannon, A. G. (2003). Some characteristics of primes within modular rings. Notes on Number Theory and Discrete Mathematics, 9(3), 49-58.

Comments are closed.