J. M. Rybak, J. V. Leyendekkers and A. G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132
Volume 1, 1995, Number 2, Pages 53–59
Full paper (PDF, 3.9 Mb
Details
Authors and affiliations
J. M. Rybak
The University of Sydney, 2006, Australia
J. V. Leyendekkers
The University of Sydney, 2006, Australia
A. G. Shannon
University of Technology, Sydney, 2007, Australia
Abstract
This paper displays some old results in a new way and extends them in the context of the modular ring Z6. Various Diophantine properties of an integer matrix modulo 6 are developed in a natural way from tables of the basic binary operations.
References
- P. Hillman and G. L. Alexanderson, A First Undergraduate Course in Abstract Algebra, Wadsworth, Belmont, 1973.
- Hunter, Number Theory, Oliver and Boyd, Edinburgh, 1964.
- J. V. Leyendekkers and J. M. Rybak. The generation and analysis of Pythagorean triples within a two-parameter grid. International Journal of Mathematical Education in Science and Technology, in press.
- M. Rybak, J. V Leyendekkers and A. G. Shannon, Recurrence relation analysis of Pythagorean triple patterns. Notes on Number Theory and Discrete Mathematics, 1, 1, 1995, 1-10.
Related papers
- Leyendekkers, J. V., & Shannon, A. G. (2003). Some characteristics of primes within modular rings. Notes on Number Theory and Discrete Mathematics, 9(3), 49-58.
- Leyendekkers, J. V., Rybak, J. M. & Shannon, A. G. (1997). The anatomy of odd-exponent Diophantine triples. Notes on Number Theory and Discrete Mathematics, 3(1), 41-51.
- Leyendekkers, J. V., Rybak, J. M. & Shannon, A. G. (1997). The modular ring ℤ6 and the area of a Pythagorean triangle. Notes on Number Theory and Discrete Mathematics, 3(3), 173-175.
- Rybak, J. M., Leyendekkers, J. V., & Shannon, A. G. (1995). Integer class properties associated with an integer matrix. Notes on Number Theory and Discrete Mathematics, 1(2), 53-59.
Cite this paper
Rybak, J. M., Leyendekkers, J. V., & Shannon, A. G. (1995). Integer class properties associated with an integer matrix. Notes on Number Theory and Discrete Mathematics, 1(2), 53-59.