On a logarithmic inequality by Shenton and Kemp

József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 3, Pages 583–587
DOI: 10.7546/nntdm.2025.31.3.583-587
Full paper (PDF, 191 Kb)

Details

Authors and affiliations

József Sándor
Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania

Abstract

We offer new proof and refinement of a double inequality for \ln^2 (1+x), by L. R. Shenton and A. W. Kemp [11].

Keywords

  • Inequalities
  • Series expansions
  • Means

2020 Mathematics Subject Classification

  • 26D05
  • 26D99

References

  1. Carlson, B. C. (1972). The logarithmic mean. The American Mathematical Monthly, 79(6), 615–618.
  2. Leach, E. B., & Sholander, M. C. (1983). Extended mean values II. Journal of Mathematical Analysis and Applications, 92(1), 207–223.
  3. Lin, T.-P. (1974). The power mean and the logarithmic mean. The American Mathematical Monthly, 81(8), 879–883.
  4. Pólya, G., & Szegő, G. (1951). Isoperimetric Inequalities in Mathematical Physics. Princeton University Press.
  5. Sándor, J. (1988). Some integral inequalities. Elemente der Mathematik, 43(6), 177–180.
  6. Sándor, J. (1990). On the identric and logarithmic means. Aequationes Mathematicae, 40, 261–270.
  7. Sándor, J. (2015). A basic logarithmic inequality, and the logarithmic meanNotes on Number Theory and Discrete Mathematics, 21(1), 31–35.
  8. Sándor, J. (2016). A note on the logarithmic mean. The American Mathematical Monthly, 123(1), 112.
  9. Sándor, J. (2016). Series expansions related to the logarithmic mean. Notes on Number Theory and Discrete Mathematics, 22(2), 54–57.
  10. Sándor, J., & Bhayo, B. A. (2018). On two new means of two arguments III.  Problemy Analiza — Issues of Analysis, 7(25), 1, 116–133.
  11. Shenton, L. R., & Kemp, A. W. (1989). An S-fraction and \ln^2 (1+x). Journal of Computational and Applied Mathematics, 25(1), 121–124.

Manuscript history

  • Received: 10 May 2025
  • Accepted: 20 August 2025
  • Online First: 1 September 2025

Copyright information

Ⓒ 2025 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Sándor, J. (2025). On a logarithmic inequality by Shenton and Kemp. Notes on Number Theory and Discrete Mathematics, 31(3), 583-587, DOI: 10.7546/nntdm.2025.31.3.583-587.

Comments are closed.