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1 Introduction

In 1989 L. R. Shenton and A. W. Kemp [11], by using a series expansion for ln2(1 + x), proved
the following inequality:

x2

1 + x+ x2/12
< ln2(1 + x) <

x2

1 + x
(x > −1). (1)

Our aim in what follows is to offer a new proof and refinement of this relation based on the theory
of means.

Let a, b > 0. The logarithmic mean L = L(a, b) is defined by

L(a, b) =
b− a

ln b− ln a
for b ̸= a,

L(a, a) = a.

(2)
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The following classical inequalities for the logarithmic mean are well-known (see e.g. [5–8]):

G < L < A, (3)

where G = G(a, b) =
√
ab and A = A(a, b) =

a+ b

2
are the geometric, respectively, the

arithmetic means of a and b.
There are many simple improvements of (3); we quote, e.g.,

3
√
G2A < L <

2G+ A

3
, (4)

where the left side inequalities is due to E. B. Leach and M. C. Sholander [2], while the right side
to G. Pólya and G. Szegő [4] and B. C. Carlson [1].

Another inequality is (see [3, 9, 10]):

L < A1/3, (5)

where Ar = Ar(a, b) =
(ar + br

2

)1/r

, r ̸= 0; A0 = G denotes the root power mean of a and b.

2 Proofs and refinements of (1)

1. First assume that x > 0.

Apply the left side of (3) for a = 1, b = 1 + x. Then we get the relation

√
1 + x <

x

ln(1 + x)
, (6)

which is essentially the right side of (1).
Applying now the left side inequality of (4), we can deduce in the same manner that

3

√
(1 + x)(2 + x)

2
<

x

ln(1 + x)
. (7)

It is easy to see that
3

√
(1 + x)(2 + x)

2
>

√
1 + x,

so (7) offers an improvement of (6).
Now, we shall apply inequality (5) in order to obtain a refinement of left side of (1).
With the application a = 1, b = 1 + x, inequality (5) becomes

x

ln(1 + x)
<

(
3
√
x+ 1 + 1

2

)3

. (8)

In what follows, we shall prove that(
3
√
x+ 1 + 1

2

)3

<
√
1 + x+ x2/12. (9)
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Let x+ 1 = y3 (y > 0), when (9) becomes:(
y + 1

2

)6

<
12y3 + (y3 − 1)2

12
. (10)

After some elementary computations, which we omit here, (10) can be written equivalently as

13y6 − 18y5 − 45y4 + 100y3 − 45y2 − 18y + 13 > 0. (11)

By letting y +
1

y
= t, remark that equation (11) may be rewritten as

13t3 − 18t2 − 84t+ 136 = 0. (12)

As this can be rewritten as
(t− 2)2 · (13t+ 34) > 0,

inequality (12) follows, so the proof of (9) is completed.

Remark 1. In a recent paper [10] we have shown the surprising fact

A1/3 <
2G+ A

3
,

which shows that (5) offers a refinement of the right side of (4), too. We may ask, if eventually
the right side of (4) (which is weaker than (5)) can provide an improvement of left side of (1)?

As inequality L <
2G+A

3
yields that

x

ln(1 + x)
<

2
√
x+ 1 + x+2

2

3
=

4
√
14 + x+ 2

6
, (13)

it will be sufficient to show that

4
√
x+ 1 + x+ 2

6
<

√
1 + x+

x2

12
. (14)

By putting x+ 1 = y2, after elementary computations this becomes

y4 − 4y3 + 6y2 + 1 > 0. (15)

Remark that y4 − 4y3 + 6y2 = y2 · (y2 − 4y + 6) > 0 as y2 > 0 and y2 − 4y + 6 > 0; as the
equation y2 − 4y + 6 = 0 has a negative discriminant ∆ = 16− 24 = −8.

By the above results, one has the refinement

x

ln(1 + x)
<

4
√
x+ 1 + x+ 2

6
<

√
1 + x+

x2

12
, (16)

without knowing the fact that (5) is a refinement of right side of (4).

Remark 2. Inequality (5) was discovered in fact by T. Rado (see [10]), and rediscovered by T.-P.
Lin [3].
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2. Suppose now that x < 0. But x = −X , where X > 0. Then 0 < X < 1 and the inequality (1)
becomes

X

1−X +X2/12
< ln

1

1−X
<

X√
1−X

. (17)

In this case, all can be repeated, as remark that

X

ln 1
1−X

=
1− (1−X)

ln 1− ln(1−X)
= L(1−X, 1),

so the application of the left side of (3) gives immediately the right side of (17). A similar
refinement to (7) is

3

√
(1−X)(2−X)

2
<

X

ln 1/(1−X)
. (18)

The analogue of (8) and (9) will be:

X

ln 1/(1−X)
<

(
3
√
1−X + 1

2

)3

(19)

and (
3
√
1−X + 1

2

)3

<
√
1−X +X2/12. (20)

The notation 1−X = y3 leads again to inequality (10), which has been proved.
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