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1 Introduction

In 1989 L. R. Shenton and A. W. Kemp [11], by using a series expansion for ln2(1 + x), proved
the following inequality:
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1+x+422/12
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Our aim in what follows is to offer a new proof and refinement of this relation based on the theory
of means.
Let a,b > 0. The logarithmic mean L = L(a, b) is defined by
b—a
L(a,b) = ————— for b
(a,0) Inb—1Ina or b7 a, (2)
L(a,a) = a.
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The following classical inequalities for the logarithmic mean are well-known (see e.g. [5-8]):

G <L <A, 3)

where G = G(a,b) = vaband A = A(a,b) = GTH) are the geometric, respectively, the

arithmetic means of a and b.
There are many simple improvements of (3); we quote, e.g.,

3 2 A
VGZA< L < G; , 4)

where the left side inequalities is due to E. B. Leach and M. C. Sholander [2], while the right side
to G. Polya and G. Szegé [4] and B. C. Carlson [1].
Another inequality is (see [3,9, 10]):

L < Ay, &)

a”+b"
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where A, = A,(a,b) = ( )W, r # 0; Ap = G denotes the root power mean of a and b.

2 Proofs and refinements of (1)

1. First assume that x > 0.
Apply the left side of (3) for a = 1, b = 1 + x. Then we get the relation

o< —2 (6)

In(1+4x)’

which is essentially the right side of (1).
Applying now the left side inequality of (4), we can deduce in the same manner that

i/(lm)(zm) x

< . 7
2 In(1+ ) ™
It is easy to see that
1 2
I
2
so (7) offers an improvement of (6).
Now, we shall apply inequality (5) in order to obtain a refinement of left side of (1).
With the application a = 1, b = 1 + z, inequality (5) becomes
v _(Vetl+d ° ®
In(1+ ) 2 '

In what follows, we shall prove that
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Letz + 1=y (y > 0), when (9) becomes:

y+1\" 12+ (v* - 1)°
2 12 '

(10)

After some elementary computations, which we omit here, (10) can be written equivalently as
13y% — 18y — 45y* 4+ 100y® — 45y* — 18y + 13 > 0. (11)

By letting y + 5 = t, remark that equation (11) may be rewritten as

13t3 — 18¢2 — 84t + 136 = 0. (12)
As this can be rewritten as
(t —2)%- (13t +34) > 0,
inequality (12) follows, so the proof of (9) is completed.

Remark 1. In a recent paper [10] we have shown the surprising fact

2G+ A
3 )
which shows that (5) offers a refinement of the right side of (4), too. We may ask, if eventually

A1/3 <

the right side of (4) (which is weaker than (5)) can provide an improvement of left side of (1)?
2G+ A .
vields that

3
x 2V +1+%2  4/1d+ o +2
< = )

In(1+z) 3 6

As inequality L <

(13)

it will be sufficient to show that

47+ 1 9 2
x+6+x+ <\/1+x+f—2. (14)

By putting x + 1 = y?, after elementary computations this becomes

yt —4y® + 6y2 +1 > 0. (15)

Remark that y* — 4y® + 6y*> = y? - (y*> — 4y +6) > 0as y?> > 0 and y* — 4y + 6 > 0; as the
equation y* — 4y + 6 = 0 has a negative discriminant A = 16 — 24 = —8.

By the above results, one has the refinement

44/ 1 2 2
T - r+1+ax+ - 1+$+x_7 (16)
In(1+ x) 6 12

without knowing the fact that (5) is a refinement of right side of (4).

Remark 2. Inequality (5) was discovered in fact by T. Rado (see [10]), and rediscovered by T.-P.
Lin [3].
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2. Suppose now that v < 0. Butx = —X, where X > (0. Then 0 < X < 1 and the inequality (1)
becomes

X <1 L < X (17)
n )
1—-X+X?%/12 1-X  V1I—-X
In this case, all can be repeated, as remark that
X 1—-(1-X
— = ( ) =L(1-X,1),
In=% Inl-(l-X)

so the application of the left side of (3) gives immediately the right side of (17). A similar
refinement to (7) is

\3/(1—)()(2—)() X

2 S/ -X) (18)
The analogue of (8) and (9) will be:
X YT-X +1\°
mi/(1—X) ( > ) (19)
and \ 5
<—V1_2X+1) <V1-X+X2/12, (20)

The notation 1 — X = 1 leads again to inequality (10), which has been proved.
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