Karol Gryszka
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 3, Pages 563–569
DOI: 10.7546/nntdm.2025.31.3.563-569
Full paper (PDF, 182 Kb)
Details
Authors and affiliations
Karol Gryszka
Institute of Mathematics
University of the National Education Commission, Krakow
Podchorążych 2, 30-084 Kraków, Poland
Abstract
We briefly describe six Fibonacci-like sequences or arbitrary order that give rise to a periodic or eventually periodic sequences. We provide some examples and demonstrate the explicit periods of these sequences.
Keywords
- Arbitrary order recurrence relation
- Fibonacci sequence
- Periodic sequence
2020 Mathematics Subject Classification
- 11B39
References
- Atanassov, K. T., & Shannon, A. G. (2025). Two Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 335–339.
- Gryszka, K. (2022). A note on the Fibonacci m-step sequences modulo q. Mathematical Communications, 27(2), 215–223.
- Philippou, A. N. (1983). A note on the Fibonacci sequence of order k and the multinomial coefficients. The Fibonacci Quarterly, 21(2), 82–86.
- Shannon, A. G. (1976). Some number theoretic properties of arbitrary order recursive sequences. Bulletin of the Australian Mathematical Society, 14(1), 149–151.
Manuscript history
- Received: 9 June 2025
- Revised: 4 August 2025
- Accepted: 20 August 2025
- Online First: 21 August 2025
Copyright information
Ⓒ 2025 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Atanassov, K. T., & Shannon, A. G. (2025). Two Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(2), 335–339.
Cite this paper
Gryszka, K. (2025). Another six Fibonacci-like sequences. Notes on Number Theory and Discrete Mathematics, 31(3), 563-569, DOI: 10.7546/nntdm.2025.31.3.563-569.