A new approach to tridiagonal matrices related to the Sylvester–Kac matrix

Efruz Özlem Mersin and Mustafa Bahşi
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 2, Pages 211–227
DOI: 10.7546/nntdm.2025.31.2.211-227
Full paper (PDF, 307 Kb)

Details

Authors and affiliations

Efruz Özlem Mersin
Department of Mathematics, Faculty of Science and Arts, Aksaray University
Türkiye

Mustafa Bahşi
Department of Mathematics and Science Education, Faculty of Education, Aksaray University
Türkiye

Abstract

The Sylvester–Kac matrix, a well-known tridiagonal matrix, has been extensively studied for over a century, with various generalizations explored in the literature. This paper introduces a new type of tridiagonal matrix, where the matrix entries are defined by an integer sequence, setting it apart from the classical Sylvester–Kac matrix. The aim of this paper is to investigate several fundamental properties of this generalized matrix, including its algebraic structure, determinant, inverse, LU decomposition, characteristic polynomial, and various norms.

Keywords

  • Characteristic polynomial
  • Determinant
  • Norm
  • Sylvester–Kac matrix
  • Tridiagonal matrix

2020 Mathematics Subject Classification

  • 15A18
  • 15A23
  • 15A36
  • 15A60

References

  1. Anđelic, M., da Fonseca, C. M., Kılıç, E., & Stanic, Z. (2022). A Sylvester–Kac matrix type and the Laplacian controllability of half graphs. The Electronic Journal of Linear Algebra, 38, 559–571.
  2. Boros, T., & Rózsa, P. (2007). An explicit formula for singular values of the Sylvester–Kac matrix. Linear Algebra and Its Applications, 421(2–3), 407–416.
  3. Cantoni, A., & Butler, P. (1976). Eigenvalues and eigenvectors of symmetric centrosymmetric matrices. Linear Algebra and Its Applications, 13(3), 275–288.
  4. Cayley, A. (1858). On the determination of the value of a certain determinant. Quarterly Journal of Pure and Applied Mathematics, 2, 163–166.
  5. Chu, W. (2010). Fibonacci polynomials and Sylvester determinant of tridiagonal matrix. Applied Mathematics and Computation, 216(3), 1018–1023.
  6. Chu, W., & Kılıç, E. (2024). Left and right eigenvectors of a variant of the Sylvester–Kac matrix. Bulletin of the Australian Mathematical Society, 109(2), 316–326.
  7. Chu, W., & Wang, X. (2008). Eigenvectors of tridiagonal matrices of Sylvester type. Calcolo, 45, 217–233.
  8. Dyachenko, A., & Tyaglov, M. (2024). On the spectrum of tridiagonal matrices with two-periodic main diagonal. Special Matrices, 12(1), 20240009.
  9. Du, Z., & da Fonseca, C. M. (2024). Sylvester–Kac matrices with quadratic spectra: A comprehensive note. The Ramanujan Journal, 65(3), 1313–1322.
  10. Du, Z., & da Fonseca, C. M. (2025). A note on the eigenvalues of a Sylvester–Kac type matrix with off-diagonal biperiodic perturbations. Journal of Computational and Applied Mathematics, 461, 116429.
  11. Da Fonseca, C. M. (2020). A short note on the determinant of a Sylvester–Kac type matrix. International Journal of Nonlinear Sciences and Numerical Simulation, 21(3–4), 361–362.
  12. Da Fonseca, C. M., & Kılıç, E. (2020). An observation on the determinant of a Sylvester–Kac type matrix. Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 28(1), 111–115.
  13. Da Fonseca, C. M., Kılıç, E., & Pereira, A. (2020). The interesting spectral interlacing property for a certain tridiagonal matrix. Electronic Journal of Linear Algebra, 36, 587–598.
  14. Da Fonseca, C. M., & Kılıç, E. (2021). A new type of Sylvester–Kac matrix and its spectrum. Linear and Multilinear Algebra, 69(6), 1072–1082.
  15. Da Fonseca, C. M., Mazilu, D. A., Mazilu, I., & Williams, H. T. (2013). The eigenpairs of a Sylvester–Kac type matrix associated with a simple model for one-dimensional deposition and evaporation. Applied Mathematics Letters, 26(12), 1206–1211.
  16. Eisele, J .A., & Mason, R. M. (1970). Applied Matrix and Tensor Analysis. John Wiley and Sons.
  17. Horn, R. A., & Johnson, C. R. (2012). Matrix Analysis. Cambridge University Press, New York.
  18. Hu, W., Zheng, Y., & Jiang, Z. (2021). Fermat–Sylvester–Kac matrix. Advances &
    Applications in Discrete Mathematics, 27(2), 157–172.
  19. Jiang, Z., Zheng, Y., & Li, T. (2021). Characteristic polynomial, determinant and inverse of a Fibonacci–Sylvester–Kac matrix. Special Matrices, 10(1), 40–46.
  20. Kac, M. (1947). Random walk and the theory of Brownian motion. The American
    Mathematical Monthly, 54(7P1), 369–391.
  21. Kılıç, E., & Arıkan, T. (2016). Evaluation of spectrum of 2-periodic tridiagonal-Sylvester matrix. Turkish Journal of Mathematics, 40(1), 80–89.
  22. Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications. Pure and Applied Mathematics, A Wiley-Interscience Series of Texts, Monographs, and Tracts, John Wiley and Sons, New York.
  23. Muthiyalu, N., & Usha, S. (1992). Eigenvalues of centrosymmetric matrices. Computing (Wien. Print), 48(2), 213–218.
  24. Muir, T. (1960). The Theory of Determinants in the Historical Order of Development. Vol. 2. Dover Publications Inc., New York.
  25. Painvin, L. (1858). Sur un certain système d’équations linéaires. Journal de Mathématiques Pures et Appliquées, 2, 41–46.
  26. Sylvester, J. J. (1854). Théoreme sur les déterminants. Nouvelles Annales de Mathématiques, 13(305), 1854.
  27. Taussky, O., & Todd, J. (1991). Another look at a matrix of Mark Kac. Linear Algebra and Its Applications, 150, 341–360.
  28. Usmani, R. A. (1994). Inversion of a tridiagonal Jacobi matrix. Linear Algebra and Its Applications, 212(213), 413–414.

Manuscript history

  • Received: 28 February 2024
  • Revised: 8 November 2024
  • Accepted: 29 April 2025
  • Online First: 5 May 2025

Copyright information

Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Mersin, E. Ö., & Bahşi, M. (2025). A new approach to tridiagonal matrices related to the Sylvester–Kac matrix. Notes on Number Theory and Discrete Mathematics, 31(2), 211-227, DOI: 10.7546/nntdm.2025.31.2.211-227.

Comments are closed.