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Abstract: The Sylvester–Kac matrix, a well-known tridiagonal matrix, has been extensively
studied for over a century, with various generalizations explored in the literature. This paper
introduces a new type of tridiagonal matrix, where the matrix entries are defined by an integer
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structure, determinant, inverse, LU decomposition, characteristic polynomial, and various norms.
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1 Introduction

Tridiagonal matrices play a significant role in various fields, including numerical analysis and
physics, because of their efficient computational properties. They have been widely studied for
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their ability to solve structured linear systems and to model physical applications. As an example
of a tridiagonal matrix, consider the following Sylvester–Kac (or Clement) matrix

S =



0 1 0 · · · 0 0

n− 1 0 2 · · · 0 0

0 n− 2 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 n− 1

0 0 0 · · · 1 0


.

This matrix, introduced by Sylvester [26], is notable for its remarkable eigenvalue properties.
The determinant formula for Sylvester’s matrix was first proposed by Sylvester [26], though without
a proof. Subsequent attempts to justify and extend it can be found in papers such as [4, 24, 25].
Kac [20] provided a systematic proof, while also deriving a general expression for the characteristic
polynomial, thus deepening the understanding of the matrix’s spectral properties.

Numerous papers in the literature examine various types of Sylvester–Kac matrices, focusing
on properties such as the determinant, inverse, characteristic polynomial, and spectrum [1, 2, 5–
16, 21, 23, 27]. These contributions reflect the ongoing interest in expanding both the applications
and the theoretical significance of Sylvester–Kac matrices. In particular, Du and da Fonseca [9]
presented important results on Sylvester–Kac matrices, focusing on their eigenvalues and spectra
with quadratic forms. They introduced a unified approach using a lower triangular matrix based on
Pascal’s triangle and provided a simple proof for Sylvester’s determinant claim. The paper [9] also
includes a summary of important historical developments and recent contributions. Dyachenko
and Tyaglov [8] studied the spectral properties of tridiagonal matrices with a two-periodic main
diagonal. Their paper builds upon earlier results on Sylvester–Kac matrices, extending them to the
class of irreducible complex tridiagonal matrices. Using a method based on right-eigenvectors,
they analysed these matrices through a related matrix that shares the same subdiagonal and
superdiagonal but has a zero main diagonal, deriving explicit expressions for the spectrum
and eigenvectors. Du and da Fonseca [10] provided a combinatorial proof for determining the
eigenvalues of a biperiodic extension of the Sylvester–Kac matrix, obtained by adding a constant
periodically to the non-zero off-diagonal entries. They also discussed a possible biperiodic
extension. A tridiagonal extension of Sylvester’s matrix was investigated by deriving left and right
eigenvectors, establishing their orthogonality, and computing the determinants of the corresponding
eigenvector matrices in closed form by Chu and Kılıç [6].

Using number sequences in matrices helps create new types of structured matrices, whose
behaviour can be studied by looking at the properties of the sequence. This method has been useful
in expanding classical matrix families and finding new applications. Hu et al. [18] introduced
a type of the Sylvester–Kac matrix with the Fermat numbers and obtained determinant, inverse,
characteristic polynomial and eigenvalues of this matrix. Also, Jiang et al. [19] studied on the
Sylvester–Kac matrix with the Fibonacci numbers which are known by the recurrence relation [22]

Fk+1 = Fk + Fk−1 with F0 = 0 and F1 = 1.
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The Fibonacci–Sylvester–Kac matrix is defined as

SFk,n =



0 F1 0 · · · 0 0

Fn−1 0 F2 · · · 0 0

0 Fn−2 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 Fn−1

0 0 0 · · · F1 0


,

and the entries of the n-dimensional matrix SFk,n = [fij] is generated by the rule [19]

fij =


Fi, if j = i+ 1, 1 ≤ i ≤ n− 1

Fn+1−i, if j = i− 1, 2 ≤ i ≤ n

0, otherwise.

The determinant, inverse and characteristic polynomial of this matrix were examined depending
on whether the dimension of the matrix is odd or even [19].

Motivated by [18] and [19], we introduce a new tridiagonal matrix related to the Sylvester–Kac
matrix, which is defined as follows

Sak,n =



0 a1 0 · · · 0 0

an−1 0 a2 · · · 0 0

0 an−2 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 an−1

0 0 0 · · · a1 0


, (1.1)

where {ak}n−1
k=1 is a real sequence. The entries of the n-dimensional matrix Sak,n = [sij] are

generated as

sij =


ai, if j = i+ 1, 1 ≤ i ≤ n− 1

an+1−i, if j = i− 1, 2 ≤ i ≤ n

0, otherwise.

In the present paper, we aim to examine basic properties of the matrix Sak,n, such as algebraic
structure, determinant, inverse, LU decomposition, characteristic polynomial, and some norms.
Firstly, we give the following preliminaries.

Definition 1.1. [23] The n-dimensional symmetric elementary matrix În = [ιij] is defined by

ιij = δi,n+1−j, i, j = 1, 2, . . . , n,

where δi,j is the Kronecker delta.

Definition 1.2. [23] The n-dimensional matrix Ψ = [ψij] is called centrosymmetric if its entries
satisfy the following condition

ψij = ψn+1−i,n+1−j i, j = 1, 2, . . . , n.
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For the n-dimensional centrosymmetric matrix Ψ, there also holds the equality

Ψ = ÎnΨÎn,

where În is the n-dimensional symmetric elementary matrix.

Definition 1.3. [23] Let v, w be n
2

- and n−1
2

-dimensional vectors, respectively. Then, the following
definitions hold:

(i) An n-dimensional vector Φ is called symmetric if Φ = ÎnΦ, and it can be expressed as

Φ =


(
v, În

2
v
)T

, if n is even,(
w,Φn+1

2
, În−1

2
w
)T

, if n is odd.

(ii) An n-dimensional vector Φ is called skew symmetric if Φ = −ÎnΦ, and it can be expressed
as

Φ =


(
v,−În

2
v
)T

, if n is even,(
w, 0,−În−1

2
w
)T

, if n is odd,

where În
2

and În−1
2

denote the n
2
- and n−1

2
-dimensional symmetric elementary matrices,

respectively (see Definition 1.1).

Next, we present the following lemma, which recalls the specific block structures of real
centrosymmetric matrices, depending on whether the matrix order is even or odd.

Lemma 1.1. [23, Lemma 1, pp. 214] Let Ψ be an n-dimensional real centrosymmetric matrix.
Then, for even n, the matrix Ψ can be partitioned as follows

Ψ =

(
A JBJ

B JAJ

)
, (1.2)

where A,B and J are n
2
-dimensional square matrices. For odd n, the matrix Ψ can be expressed

as

Ψ =

 A∗ X2 J∗B∗J∗

X1 q X1J
∗

B∗ J∗X2 J∗A∗J∗

 , (1.3)

where A∗, B∗ and J∗ are n−1
2

-dimensional square matrices, X1, XT
2 are n−1

2
-dimensional row

vectors and q is the central entry of Ψ.

The block structures given in Lemma 1.1 play a fundamental role in spectral analysis of
centrosymmetric matrices, particularly in deriving the eigenvalues and corresponding orthonormal
eigenvectors, as formulated in the following theorem.

Theorem 1.1. [23, Theorems 1a,1b, pp. 215–216]

(i) Let n be even and Ψ be the matrix which is partitioned as in Equation (1.2). Then, n
2

skew
symmetric orthonormal eigenvectors vi ∈ Ψ and the corresponding eigenvalues γi are
obtained from the solution of the equation

(A− JB)ui = γiui,
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where i = 1, 2, . . . , n
2
, vi = 1√

2
(ui,−Jui)T , and ui is the form of an orthonormal set.

The n
2

symmetric orthonormal eigenvectors wj ∈ Ψ and the corresponding eigenvalues σj
are determined from the solution of the equation

(A+ JB) yj = σjyj,

where j = 1, 2, . . . , n
2

, wj =
1√
2
(yj, Jyj)

T , and yj is the form of an orthonormal set. The set(
v1, v2, . . . , vn

2
, w1, w2, . . . , wn

2

)
is an orthonormal set of n eigenvectors of Ψ.

(ii) Let n be odd and Ψ be the matrix which is partitioned as in Equation (1.3). Then, n−1
2

skew symmetric orthonormal eigenvectors vi ∈ Ψ and the corresponding eigenvalues γi are
obtained from the solution of the equation

(A∗ − J∗B∗)ui = γiui,

where i = 1, 2, . . . , n−1
2

, vi = 1√
2
(ui, 0,−J∗ui)

T , and ui is the form of an orthonormal set.
The n+1

2
symmetric orthonormal eigenvectors wj ∈ Ψ and the corresponding eigenvalues σj

are determined from the solution of the equation(
A∗ + J∗B∗

√
2X2√

2X1 q

)(
yj
αj

)
= σj

(
yj
αj

)
,

where j=1, 2, . . . , n+1
2

,wj=
1√
2
(yj, 2αj, J

∗yj)
T and (yj, αj)

T is the form of an orthonormal

set. Also, the set
(
v1, v2, . . ., vn−1

2
, w1, w2, . . ., wn+1

2

)
is an orthonormal set of n eigenvectors

of Ψ.

2 Main results

Let VSak,n denote the set of all n-dimensional matrices Sak,n as defined in Equation (1.1). We begin
by investigating the algebraic structure of VSak,n .

Theorem 2.1. VSak,n is an (n− 1)-dimensional vector space.

Proof. Let Sbk,n = [pij] and Sck,n = [rij] be two matrices in VSak,n , associated with any real
sequences {bk}n−1

k=1 and {ck}n−1
k=1 , respectively. Also, let x and y be any real numbers. If

Sdk,n = xSbk,n + ySck,n = [qij]

for a real sequence {dk}n−1
k=1 , then

qij = xpij + yrij =


xbi + yci, if j = i+ 1, 1 ≤ i ≤ n− 1

xbn+1−i + ycn+1−i, if j = i− 1, 2 ≤ i ≤ n

0, otherwise.

Moreover,

xb+ yc = (xb1 + yc1, xb2 + yc2, . . . , xbn−1 + ycn−1) = (e1, e2, . . . , en−1) = {ek}n−1
k=1 .
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If Sek,n = [tij] ∈ VSak,n corresponds to the sequence {ek}n−1
k=1 , then

tij =


ei, if j = i+ 1, 1 ≤ i ≤ n− 1

en+1−i, if j = i− 1, 2 ≤ i ≤ n

0 otherwise,

=


xbi + yci, if j = i+ 1, 1 ≤ i ≤ n− 1

xbn+1−i + ycn+1−i, if j = i− 1, 2 ≤ i ≤ n

0, otherwise.

Hence,
Sek,n = Sxbk+yck,n = xSbk,n + ySck,n ∈ VSak,n .

Thus, VSak,n is a subspace of the vector space of all n-dimensional matrices.
Let {om} be an (n− 1)-tuple whose m-th component is one and the others are zero.

For instance, o2 = (0, 1, 0, . . . , 0). Then, every matrix Sak,n ∈ VSak,n can be expressed as

Sak,n =
n−1∑
m=1

amSom,n,

where am’s represent the terms of the real sequence {ak}n−1
k=1 . Moreover, the matrices Som,n are

linearly independent for m = 1, 2, . . . , n − 1. Then, the n − 1 matrices Som,n form a basis for
VSak,n . That is, the dimension of VSak,n is n− 1.

Theorem 2.2. The determinant of the matrix Sak,n is

det (Sak,n) =


0, if n is odd

(−1)
n
2

n
2∏

i=1

a22i−1, if n is even.

Proof. Since the odd case can be verified easily and the even case is a well-known result (see,
e.g., [11, 12, 24]), we omit the proof.

Theorem 2.3. Let the inverse of the matrix Sak,n be S−1
ak,n

= [qij] for even n. Then,

qij =



(−1)
i+j−1

2
−1 1

ai−1

j
2
−1∏

t= i−1
2

a2t
an−1−2t

, if i = 1, 3, . . . , n− 1, j = i+ 1, i+ 3, . . . , n

(−1)
i+j−1

2
−1 1

an+1−j

i
2
−1∏

t= j−1
2

an−2t

a2t+1

, if j = 1, 3, . . . , n− 1, i = j + 1, j + 3, . . . , n

0, otherwise,

where {ak}n−1
k=1 is the real sequence, used in the matrix Sak,n. We note that for i = 1, the term a0

appears. Here, a0 ̸= 0 serves as an auxiliary parameter and is not part of the sequence.
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Proof. According to the determinant given in Theorem 2.2, we obtain that the matrix Sak,n is
singular when n is odd. Then, we consider the inverse of the matrix Sak,n only for even n. Let
S−1
ak,n

= [qij]. Then, the equality

Sak,nS
−1
ak,n

=


a1q21 a1q22 · · · a1q2,n−1 a1q2n

an−1q11+a2q31 an−1q12+a2q32 · · · an−1q1,n−1+a2q3,n−1 an−1q1n+a2q3n
...

...
. . .

...
...

a2qn−2,1+an−1qn1 a2qn−2,2+an−1qn2 · · · a2qn−2,n−1 + an−1qn,n−1 a2qn−2,n+an−1qnn
a1qn−1,1 a1qn−1,2 · · · a1qn−1,n−1 a1qn−1,n


= In,

where In is the n-dimensional identity matrix, describes the entries of S−1
ak,n

as desired.

Remark 2.1. We note that Theorem 2.3 is a consequence of the general inversion formula provided
in [28]. Additionally, the matrix S−1

ak,n
is centrosymmetric, as Sak,n itself is centrosymmetric, as

discussed in [3].

Next, we present the LU decomposition for the matrix Sak,n.

Theorem 2.4. The LU decomposition of the matrix Sak,n exists for all n, and the entries of the
n-dimensional matrices L and U are as follows:

(i) Let n be even. Then, the entries of L = [lij] and U = [uij] are

lij =


1, if i = j
an−i+2

aj−1
, if i = j + 2, i = 2m, m = 2, 3, . . . , n

2

0, otherwise

and

uij =


an−i, if i = j, i = 2m+ 1, m = 0, 1, . . . , n

2
− 1

ai−1, if i = j, i = 2m, m = 1, 2, . . . , n
2

ai+1, if i = j − 2, i = 2m+ 1, m = 0, 1, . . . , n−1
2

− 2

0, otherwise.

(ii) Let n be odd. Then, the entries of L =
[
l∗ij
]

and U =
[
u∗ij
]

are

l∗ij =


1, if i = j

a1
an−2

, if i = n, j = n− 1
an−i+2

aj−1
, if i = j + 2, i = 2m, m = 2, 3, . . . , n−1

2

0, otherwise

and

u∗ij =


an−i, if i = j, i = 2m+ 1, m = 0, 1, . . . , n−1

2
− 1

ai−1, if i = j, i = 2m, m = 1, 2, . . . , n−1
2

ai+1, if i = j − 2, i = 2m+ 1, m = 0, 1, . . . , n
2
− 2

0, otherwise.

Proof. The matrix multiplication Sak,n = LU yields the desired results.
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The characteristic polynomial of a matrix provides important information about the matrix
in question. Now, we examine the characteristic polynomial and eigenvalues of the matrix Sak,n

considering Theorem 1.1.
Let n be even, then the matrix Sak,n can be partitioned as

Sak,n =

(
A În

2
BÎn

2

B În
2
AÎn

2

)
,

where În
2

is the n
2
-dimensional symmetric elementary matrix, and A = [aij] and B = [bij] are the

n
2
-dimensional matrices with entries characterized by

aij =


ai, if j = i+ 1, 1 ≤ i ≤ n

2
− 1,

an+1−i, if j = i− 1, 2 ≤ i ≤ n
2
,

0 otherwise,

(2.1)

and

bij =

an
2
, if i = 1, j = n

2
,

0, otherwise,
(2.2)

respectively. By considering Sak,n is a centrosymmetric matrix, we have the following lemma.

Lemma 2.1. For even n, the matrix Sak,n has the n
2

skew symmetric orthonormal eigenvectors τi
with corresponding eigenvalues αi, determined by solutions of the equation(

A− În
2
B
)
ξi = αiξi,

where i = 1, 2, . . . , n
2
, A and B are the matrices given by Equations (2.1) and (2.2), respectively,

În
2

is the n
2
-dimensional symmetric elementary matrix and τi = 1√

2

(
ξi,−În

2
ξi

)T
’s are the

n-dimensional vectors. Also, ξi form an orthonormal set. The n
2

symmetric orthonormal
eigenvectors κj of Sak,n and the corresponding eigenvalues βj are obtained by the solutions
of the equation (

A+ În
2
B
)
ηj = βjηj,

where j = 1, 2, . . . , n
2
, A,B are the matrices given by Equations (2.1) and (2.2), respectively,

În
2

is the n
2
-dimensional symmetric elementary matrix and κj = 1√

2

(
ηj, În

2
ηj

)T
’s are the

n-dimensional vectors. Also, ηj form an orthonormal set. The set
(
τ1, τ2, . . . , τn

2
, κ1, κ2, . . . , κn

2

)
is an orthonormal set of n eigenvectors of Sak,n.

As a conclusion of Lemma 2.1, the eigenvalues of the matrix Sak,n are the same as those of the
matrices A − În

2
B and A + În

2
B in the even case of n. The next theorem is useful to compute

eigenvalues of the matrix Sak,n for even n.

Theorem 2.5. Let n be even and let QA−,n
2
(λ) and QA+,n

2
(λ) be the characteristic polynomials

of tridiagonal matrices A− = A− În
2
B and A+ = A+ În

2
B, respectively. Then,

QA−,n
2
(λ) =

(
λ+ an

2

)
d

′
n
2
−1 − an

2
−1an

2
+1d

′
n
2
−2

and
QA+,n

2
, (λ) =

(
λ− an

2

)
d

′
n
2
−1 − an

2
−1an

2
+1d

′
n
2
−2,

218



where d
′
i

(
i = 3, 4, . . . , n

2
− 1
)

represents the determinant of the i-th leading principle submatrix
of the matrix λIn

2
−A− or λIn

2
−A+ and satisfies the following recurrence relation

d
′

i = λd
′

i−1 − ai−1an+1−id
′

i−2

with initial conditions d
′
0 = 1, d

′
1 = λ and d

′
2 = λ2 − a1an−1.

Proof. By doing row expansion followed by the last column expansion for the matrices λIn
2
−A−

and λIn
2
−A+, respectively, the desired results are obtained.

We note that for every real number α ̸=0, if QA−,n
2
(α)=0, then it is clear that QA+,n

2
(−α)=0,

as well. The next Corollary gives the characteristic polynomial of the matrix Sak,n, with the help
of the characteristic polynomials of the matrices A− and A+.

Corollary 2.1. Let n be even, and let QA−,n
2
(λ) and QA+,n

2
(λ) denote the characteristic

polynomials of tridiagonal matrices A− and A+, respectively. Then, we have the equality

QSak
,n (λ) = QA−,n

2
(λ)QA+,n

2
(λ)

for the characteristic polynomial of Sak,n.

Proof. For even n, considering Lemma 2.1 and Theorem 2.5, the roots of the polynomials
QA+,n

2
(λ) and QA−,n

2
(λ) together form the roots of the polynomial QSak

,n (λ). Therefore, by the
factoring principle, we obtain the equality

QSak
,n (λ) = QA−,n

2
(λ)QA+,n

2
(λ)

for even n.

For an odd n, the matrix Sak,n can be partitioned as

Sak,n =


A∗ X2 0n−1

2

X1 0 X1În−1
2

0n−1
2

În−1
2
X2 În−1

2
A∗În−1

2

 ,

where A∗ =
[
a∗ij
]

is an n−1
2

-dimensional matrix with entries characterized by

a∗ij =


ai, if j = i+ 1, 1 ≤ i ≤ n−1

2
− 1,

an+1−i, if j = i− 1, 2 ≤ i ≤ n−1
2
,

0, otherwise,

(2.3)

where 0n−1
2

is the n−1
2

-dimensional zero matrix, În−1
2

is the n−1
2

-dimensional symmetric elementary

matrix, X1 =
(
0, 0, . . . , an+1

2

)
, XT

2 =
(
0, 0, . . . , an−1

2

)
are the n−1

2
-dimensional row vectors, and

0 is the central entry of Sak,n.
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Lemma 2.2. For odd n, the matrix Sak,n has the n−1
2

skew symmetric orthonormal eigenvectors τi
with corresponding eigenvalues αi, determined by the solutions of the equation

A∗ξi = αiξi,

where i = 1, 2, . . . , n−1
2

, A∗ is the matrix given by Equation (2.3), τi =
(
ξi, 0,−În−1

2
ξi

)T
’s are

the n-dimensional vectors and În−1
2

is the n−1
2

-dimensional symmetric elementary matrix. Also,
ξi form an orthonormal set. The n+1

2
symmetric orthonormal eigenvectors κj of Sak,n and the

corresponding eigenvalues βj are obtained by the solutions of the equation

A∗∗

(
ηj
qj

)
=

(
A∗

√
2X2√

2X1 0

)(
ηj
qj

)
= βj

(
ηj
qj

)
,

where j=1, 2, . . . , n+1
2

, κj= 1√
2

(
ηj, 2qj, În+1

2
ηj

)T
’s are the n-dimensional vectors,A∗ is the matrix

given by Equation (2.3), X1 =
(
0, 0, . . . , an+1

2

)
, XT

2 =
(
0, 0, . . . , an−1

2

)
are n+1

2
-dimensional

row vectors. Also, ηj form an orthonormal set. The set
(
τ1, τ2, . . . , τn−1

2
, κ1, κ2, . . . , κn+1

2

)
is an

orthonormal set of n eigenvectors of Sak,n.

Lemma 2.2 demonstrates that the eigenvalues of Sak,n coincide with those of the matrices A∗

and A∗∗ when n is odd. Building on this result, we present the following theorem, which serves as
a useful tool for calculating the eigenvalues of the matrix Sak,n in the case of odd n.

Theorem 2.6. Let n be odd and letQA∗,n−1
2

(λ) andQA∗∗,n+1
2

(λ) be the characteristic polynomials
of the tridiagonal matrices A∗ and A∗∗, respectively. Then,

QA∗,n−1
2

(λ) = λd
′′
n−1
2

−1
− an−1

2
−1an+1

2
+1d

′′
n−1
2

−2

and
QA∗∗,n+1

2
(λ) = λd

′′
n+1
2

−1
− 2an−1

2
an+1

2
d

′′
n+1
2

−2
,

where d
′′
i

(
i = 3, 4, . . . , n−1

2
− 1
)

represents the determinant of the i-th leading principle submatrix
of the matrix A∗ or A∗∗ and satisfies the following recurrence relation

d
′′

i = λd
′′

i−1 − ai−1an+1−id
′′

i−2

with initial conditions d
′′
0 = 1, d

′′
1 = λ and d

′′
2 = λ2 − a1an−1.

Proof. Performing a row expansion followed by an expansion along the last column for the
matrices A∗ and A∗∗, respectively, yields the desired results.

We note that, for every real number α ̸= 0, if QA∗,n−1
2

(α) = 0, then QA∗,n−1
2

(−α) = 0.
Similarly, for every real number α ̸= 0, if QA∗∗,n+1

2
(α) = 0, then QA∗∗,n+1

2
(−α) = 0. The next

Corollary gives the characteristic polynomial of the matrix Sak,n with the help of the characteristic
polynomials of the matrices A∗ and A∗∗.
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Corollary 2.2. Let n be odd and let QA∗,n−1
2

(λ) and QA∗∗,n+1
2

(λ) denote the characteristic
polynomials of tridiagonal matrices A∗ and A∗∗, respectively. Then, we have the equality

QSak
,n (λ) = QA∗,n−1

2
(λ)QA∗∗,n+1

2
(λ)

for the characteristic polynomial of Sak,n.

Proof. For odd n, considering Lemma 2.2 and Theorem 2.6, the roots of the polynomials
QA∗,n−1

2
(λ) and QA∗∗,n+1

2
(λ) together form the roots of the polynomial QSak

,n (λ). Therefore, by
the factoring principle, we obtain the equality

QSak
,n (λ) = QA∗,n−1

2
(λ)QA∗∗,n+1

2
(λ) ,

where n is odd.

Remark 2.2. The eigenvalues of the matrix Sak,n are distinct and symmetric around zero.

The results on the Euclidean and spectral norms of the matrix Sak,n are presented here.
Before proceeding, it is important to recall some essential concepts that will be necessary for the
discussion.

The Euclidean (Frobenius) norm and spectral norm of m× n matrix X = [xij] are defined as

∥X∥F =

[
m∑
i=1

n∑
j=1

|xij|2
] 1

2

and ∥X∥2 =
√

max
1≤i≤n

λi
(
XHX

)
,

respectively, where XH is the conjugate transpose of the matrix X and λi
(
XHX

)
’s denote

eigenvalues of XHX , [17]. Let X = [xij], Y = [yij] and Z = [zij] be the m × n matrices and
Y ◦ Z = [yijzij] = X . Then,

∥X∥2 ≤ r1 (Y ) c1 (Z) ,

where r1 (Y ) is the maximum row length norm of the matrix Y and c1 (Z) is the maximum column
length norm of the matrix Z defined by

r1 (Y ) = max
i

√∑
j

|yij|2 and c1 (Z) = max
j

√∑
i

|zij|2,

respectively, [17].

Theorem 2.7. The following results hold for the Euclidean and spectral norms of the matrix Sak,n.

(i) The Euclidean norm of the matrix Sak,n is

∥Sak,n∥F =

√√√√2
n−1∑
i=1

a2i ,

(ii) The upper bound for the spectral norm of the matrix Sak,n is as follows:
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• Let the sequence {ak}n−1
k=1 be positive increasing, where am − am−1 ≥ 1 (m = 2, 3, . . . , n).

Then,
∥Sak,n∥2 ≤ a2n−1 + 1.

• Let the sequence {ak}n−1
k=1 be positive decreasing, where a1 ≥ 1. Then,

∥Sak,n∥2 ≤ a1

√
a21 + n− 1.

Proof. (i) The result is obtained easily considering the definition of the Euclidean norm.

(ii) By using the Hadamard product, the matrix Sak,n can be expressed as

Sak,n =



0 1 0 · · · 0 0

an−1 0 1 · · · 0 0

0 an−2 0 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 1

0 0 0 · · · a1 0


︸ ︷︷ ︸

Y

◦



1 a1 0 · · · 0 0

1 1 a2 · · · 0 0

1 1 1 · · · 0 0
...

...
... . . . ...

...
1 1 1 · · · 1 an−1

1 1 1 · · · 1 1


︸ ︷︷ ︸

Z

.

• For the positive increasing sequence {ak}n−1
k=1 , where am − am−1 ≥ 1 (m = 2, 3, . . . , n), the

maximum row length norm of the matrix Y = [yij] and maximum column length norm of
the matrix Z = [zij] are

r1 (Y ) = max
i

√∑
j

|yij|2 =
√
a2n−1 + 1

and

c1 (Z) = max
j

√∑
i

|zij|2 =
√
a2n−1 + 1,

respectively. Hence, we have

∥Sak,n∥2 ≤ r1 (Y ) c1 (Z) = a2n−1 + 1.

• For the positive decreasing sequence {ak}n−1
k=1 , where a1 ≥ 1, we have

r1 (Y ) = max
i

√∑
j

|yij|2 =
√
a21 = a1

and

c1 (Z) = max
j

√∑
i

|zij|2 =
√
a21 + n− 1.

Hence, we obtain

∥Sak,n∥2 ≤ r1 (Y ) c1 (Z) = a1

√
a21 + n− 1.

as desired.
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The Fibonacci-sequence Sylvester–Kac matrix SFk,n, a specific case of Sak,n, is obtained by
replacing the sequence {ak}n−1

k=1 with the Fibonacci sequence {Fk}n−1
k=1 . We proceed to derive

results concerning the Euclidean and spectral norms of this matrix. In our analysis, we utilize the
Lucas numbers, defined recursively by the relation

Lk+1 = Lk + Lk−1,

as well as the Binet formulas for the Fibonacci and Lucas numbers, which are given by

Fk =
αk − βk

α− β
and Lk = αk + βk,

respectively, where α =
1 +

√
5

2
and β =

1−
√
5

2
, [22].

Corollary 2.3. (i) The Euclidean norm of the Fibonacci–Sylvester–Kac matrix is

∥SFk,n∥F =

√
2

5
(L2n−1 − L1 + (−1)n + 1),

where Ln is the n-th Lucas number.

(ii) The upper bound for the spectral norm of the Fibonacci–Sylvester–Kac matrix is

∥SFk,n∥2 ≤ F 2
n−1 + 1.

Proof. (i) ∥SFk,n∥2F = 2
n−1∑
i=1

F 2
i

= 2
n−1∑
i=1

(
αi − βi

√
5

)2

=
2

5

n−1∑
i=1

(
α2i + β2i − 2 (−1)i

)
By the means of the well-known equality

n−1∑
i=1

pi =
pn − p

p− 1
for an arbitrary p, (p ̸= 1), we

have

∥SFk,n∥2F =
2

5

(
α2n − α2

α2 − 1
+
β2n − β2

β2 − 1

)
− 4

5

n−1∑
i=1

(−1)i

=
2

5

(
α2n − α2

α2 − 1
+
β2n − β2

β2 − 1
+ (−1)n + 1

)
=

2

5
(α2n−1 + β2n−1 − α− β + (−1)n + 1)

=
2

5
(L2n−1 − L1 + (−1)n + 1) .

(ii) The proof is similar to the proof of Theorem 2.7.

Finally, we present an example to illustrate our results. This example involves the Pell number
sequence, a sequence as significant as the Fibonacci sequence, defined by the recurrence relation

Pk = 2Pk−1 + Pk−2

for all k ≥ 2 with initial conditions P0 = 0 and P1 = 1 [22]. The first few terms of the Pell
sequence are 0, 1, 2, 5, 12, 29, 169, 408, 985, . . . .
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Example 2.1. By substituting {ak}n−1
k=1 with {Pk}n−1

k=1 in the matrix Sak,n for n = 5, 6, we obtain
the following matrices

SPk,5 =


0 1 0 0 0

12 0 2 0 0

0 5 0 5 0

0 0 2 0 12

0 0 0 1 0

 and SPk,6 =



0 1 0 0 0 0

29 0 2 0 0 0

0 12 0 5 0 0

0 0 5 0 12 0

0 0 0 2 0 29

0 1 0 0 1 0


.

The determinants of the matrices SPk,5 and SPk,6 are

det (SPk,5) = 0

and

det (SPk,6) = −
3∏

i=1

P 2
2i−1 = −21025.

Since the matrix SPk,5 is singular, we only have the inverse of the matrix SPk,6 as

S−1
Pk,6

=



0 1
29

0 − 2
145

0 24
145

1 0 0 0 0 0

0 0 0 1
5

0 −12
5

−12
5

0 1
5

0 0 0

0 0 0 0 0 1
24
145

0 − 2
145

0 1
29

1


.

The LU decompositions of the matrices SPk,5 and SPk,6 are

SPk,5 = LU =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 5 0 1 0

0 0 1
5

0 1




12 0 2 0 0

0 1 0 0 0

0 0 2 0 12

0 0 0 5 0

0 0 0 0 0


and

SPk,6 = LU =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 12 0 1 0 0

0 0 0 0 1 0

0 0 0 2
5

0 1





29 0 2 0 0 0

0 1 0 0 0 0

0 0 5 0 12 0

0 0 0 5 0 0

0 0 0 0 1 0

0 0 0 0 0 29


,

respectively.
For the auxiliary matrices

A∗ =

(
0 1

12 0

)
and A∗∗ =

 0 1 0

12 0 2
√
2

0 5
√
2 0

 ,

the characteristic polynomial of SPk,5 is
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QSPk
,5 (λ) = QA∗,2 (λ)QA∗∗,3 (λ)

= (λ2 − 12) (λ3 − 32λ)

= λ5 − 44λ3 + 384λ,

where QA∗,2 (λ) and QA∗∗,3 (λ) denote the characteristic polynomials of A∗ and A∗∗, respectively.
The eigenvalues of SPk,5 are

λ1 = 3.464, λ2 = 5.656, λ3 = 0, λ4 = −5.656, λ5 = −3.464.

For the auxiliary matrices

A− =

 0 1 0

29 0 2

0 12 −5

 and A+ =

 0 1 0

29 0 2

0 12 5

 ,

the characteristic polynomial of SPk,6 is

QSPk
,6 (λ) = QA−,3 (λ)QA+,3 (λ)

= (λ3 + 5λ2 − 53λ− 145) (λ3 − 5λ2 − 53λ+ 145) ,

= λ6 − 131λ4 + 4259λ2 − 21025,

where QA−,3 (λ) and QA+,3 (λ) denote the characteristic polynomials of A− and A+, respectively.
The eigenvalues of SPk,6 are

λ1 = −6.526, λ2 = 2.447, λ3 = 9.079, λ4 = −9.079, λ5 = −2.447, λ6 = 6.526.

The Euclidean norms of the matrices SPk,5 and SPk,6 are

∥SPk,5∥F =

√√√√2
4∑

i=1

P 2
i = 18.65475811

and

∥SPk,6∥F =

√√√√2
5∑

i=1

P 2
i = 45.05552130.

The upper bounds for the spectral norms of these matrices are

∥SPk,5∥2 = 12.32882801 ≤ P 2
4 + 1 = 145

and
∥SPk,6∥2 = 29.07142814 ≤ P 2

5 + 1 = 842.

3 Conclusion

This paper introduces a new Sylvester–Kac type matrix Sak,n, whose entries are defined by
an integer sequence {ak}n−1

k=1 . The main result is the derivation of a recursive relation for the
factorization of the characteristic polynomial of the matrix Sak,n. This factorization expresses the
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characteristic polynomial as the product of the characteristic polynomials of two smaller matrices
obtained through a specific block decomposition method introduced by Muthiyalu and Usha [23].
Although the block decomposition used in this paper differs structurally from that of Cantoni and
Butler [3], both approaches yield consistent spectral results. Additionally, the matrix’s determinant,
inverse, LU decomposition, and several norms are examined, and a numerical example is provided
to confirm the results.
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