Nazmiye Yılmaz, Esra Kırmızı Çetinalp and Ömür Deveci
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 2, Pages 201–210
DOI: 10.7546/nntdm.2025.31.2.201-210
Full paper (PDF, 232 Kb)
Details
Authors and affiliations
Nazmiye Yılmaz
Department of Mathematics, Karamanoğlu Mehmetbey University
Karaman, Türkiye
Esra Kırmızı Çetinalp
Department of Engineering Sciences, Bandırma Onyedi Eylül University
Balıkesir, Türkiye
Ömür Deveci
Department of Mathematics, Kafkas University
Kars, Türkiye
Abstract
In this research, several types of definitions of the quaternion-type cyclic-balancing sequence are presented. The Cassini formula and generating function of these sequences are also obtained for all types. The quaternion-type cyclic-balancing sequences modulo the first step to transferring this topic to group theory, are examined. These sequences in finite groups are then defined. Eventually, the lengths of periods for these sequences of the generalized quaternion group are calculated.
Keywords
- Balancing sequence
- Groups
- Period
- Presentation
2020 Mathematics Subject Classification
- 11B50
- 11K31
- 20F05
References
- Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. The Fibonacci Quarterly, 37(2), 98–105.
- Campbell, C. M., & Campbell, P. P. (2005). The Fibonacci length of certain centropolyhedral groups. Journal of Applied Mathematics and Computing, 19(1–2), 231–240.
- Campbell, C. M., Campbell, P. P., Doostie, H., & Robertson, E. F. (2004). On the Fibonacci length of powers of dihedral groups. In: Applications of Fibonacci Numbers. Springer, Dordrecht, pp. 69–85.
- Campbell, C. M., Doostie, H., & Robertson, E. F. (1990). Fibonacci length of generating pairs in groups. In: Applications of Fibonacci Numbers. Springer, Dordrecht, pp. 27–35.
- Deveci, Ö., & Karaduman, E. (2012). The generalized order-k Lucas sequences in finite groups. Journal of Applied Mathematics, 2012, Article ID 464580.
- Deveci, Ö., Karaduman, E., & Campbell, C. M. (2010). The periods of k-nacci sequences in centropolyhedral groups and related groups. Ars Combinatoria, 97A, 193–210.
- Deveci, Ö., Karaduman, E., & Campbell, C. M. (2011). On the k-nacci sequences in finite binary polyhedral groups. Algebra Colloquium, 18(1), 945–954.
- Doostie, H., & Hashemi, M. (2006). Fibonacci lengths involving the Wall number k(n). Journal of Applied Mathematics and Computing, 20, 171–180.
- Karaduman, E., & Deveci, Ö. (2009). K-nacci sequences in finite triangle groups. Discrete Dynamics in Nature and Society, 2009, Article ID 453750.
- Knox, S. W. (1992). Fibonacci sequences in finite groups. The Fibonacci Quarterly, 30(2), 116–120.
- Panda, G. K. (2009). Some fascinating properties of balancing numbers. In: Proceeding of the Eleventh International Conference on Fibonacci Numbers and Their Applications, Braunschweig, Germany, July 5–9, 2004. Congressus Numerantium, 194, 185–189.
- Panda, G. K., & Rout, S. S. (2014). Periodicity of balancing numbers. Acta Mathematica Hungarica, 143(2), 274–286.
- Patel, B. K., & Ray, P. K. (2016). The period, rank and order of the sequence of balancing numbers modulo m. Mathematical Reports, 18(3), 395–401.
- Ray, P. K. (2012). Certain matrices associated with balancing and Lucas-balancing numbers. Matematika, 28(1), 15–22.
- Wall, D. D. (1960). Fibonacci series modulo m. The American Mathematical Monthly, 67(6), 525–532.
- Wilcox, H. J. (1986). Fibonacci sequences of period n in groups. The Fibonacci Quarterly, 24(4), 356–361.
Manuscript history
- Received: 9 March 2025
- Revised: 25 April 2024
- Accepted: 26 April 2025
- Online First: 2 May 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
Cite this paper
Yılmaz, N., Çetinalp, E. K., & Deveci, Ö. (2025). The quaternion-type cyclic-balancing sequence in groups. Notes on Number Theory and Discrete Mathematics, 31(2), 201-210, DOI: 10.7546/nntdm.2025.31.2.201-210.