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1 Introduction and Preliminaries

The study of number sequences has attracted considerable attention from the mathematicians
since ancient times. Since then, many of them have concentrated their interest on the study
of ravishing triangular numbers. In [1], Behera and Panda introduced the notion of balancing
numbers (Bn)n∈N as solutions to a certain Diophantine equation in 1999. Then, the recurrence
relation of this number is Bn+1 = 6Bn − Bn−1 for n ⩾ 1, where B0 = 0, B1 = 1. A study
on the Lucas-balancing numbers Cn =

√
8B2

n + 1 was published in 2009 by Panda [11]. The
recurrence relation of this number is Cn+1 = 6Cn − Cn−1 for n ⩾ 1, where C0 = 1, C1 = 3.
Also, periodicity of these numbers was examined in [12, 13].

Additionally, matrices can be used to represent the balancing numbers and can be extended to
related sequences. In [14], Ray introduced balancing F -matrix as follows:

F =

(
6 −1

1 0

)
and gave a general formula for the n-th powers of this matrix:

F n =

(
Bn+1 −Bn

Bn −Bn−1

)
.

Also, for a finitely generated group G = ⟨A⟩, where A = {a1, a2, . . . , an}, the sequence
xi = ai+1, 0 ≤ i ≤ n − 1, xn+i =

∏n
j=1 xi+j−1, i ≥ 0, is called the Fibonacci orbit of G with

respect to the generating set A, denoted FA(G) (see [2–4]).
It is well known that a sequence is periodic if, after a certain point, it consists only of

repetitions of a fixed subsequence. The number of elements in the repeating subsequence is the
period of the sequence. The study of linear recurrence sequences in groups began with the earlier
work of Wall [15], where the ordinary Fibonacci sequences in cyclic groups were investigated.
Recently, many authors have studied some special linear recurrence sequences in groups; see, for
example, [5–10, 16].

Firstly, we define the three different quaternion-type cyclic-balancing sequences and then
present some properties, such as, the Cassini formulas, generating functions, relationships
between the Balancing sequence and these quaternions in Section 2. Secondly, in Section 3, we
study quaternion-type cyclic-balancing sequences modulo m, and then we give the relationships
between the lengths of the periods of the quaternion-type cyclic-balancing sequences of the first,
second and third kinds modulo m and the generating matrices of these sequences. Finally, in
Section 4, we introduce the quaternion-type cyclic-balancing sequences in groups and calculate
the quaternion balancing lengths of generalized quaternion groups.

2 The quaternion-type cyclic-balancing sequences

In this section, we introduce three different quaternion-type cyclic-balancing sequences for n ≥ 2

any positive integer numbers. Then, we present the miscellaneous properties of such sequences.
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Definition 2.1. We define the quaternion-type cyclic-balancing sequences of the first, second and
third kinds, respectively:

x1
n =


6kx1

n−1 − jx1
n−2, if n ≡ 0 (mod 3),

6jx1
n−1 − ix1

n−2, if n ≡ 1 (mod 3),

6ix1
n−1 − kx1

n−2, if n ≡ 2 (mod 3),

x2
n =


6ix2

n−1 − kx2
n−2, if n ≡ 0 (mod 3),

6kx2
n−1 − jx2

n−2, if n ≡ 1 (mod 3),

6jx2
n−1 − ix2

n−2, if n ≡ 2 (mod 3),

x3
n =


6jx3

n−1 − ix3
n−2, if n ≡ 0 (mod 3),

6ix3
n−1 − kx3

n−2, if n ≡ 1 (mod 3),

6kx3
n−1 − jx3

n−2, if n ≡ 2 (mod 3),

the initial conditions for all type are xτ
0 = 0 and xτ

1 = 1 (1 ≤ τ ≤ 3).

Let the entries of the matrices A and B be the elements of the quaternion-type cyclic-balancing
sequences,

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
,

so that the following properties hold:

(i). A×B =

[
a11b11 + a12b21 a11b12 + a12b22
a21b11 + a22b21 a21b12 + a22b22

]
.

(ii). detA = a11a22 − a12a21.

(iii). det(A ·B) = detA · detB.

(iv). An = An−1 × A (n ∈ Z+).

Since the multiplication of quaternions is not commutative, the above properties need to
consider the multiplicative order. Therefore, it is easy to see that

detA · detB ̸= detB · detA

and
An−1 × A ̸= A× An−1.

In order to render the operation easier, we define ϵ(η) as follows:

ϵ(η) =


j, if n ≡ 0 (mod 3),

k, if n ≡ 1 (mod 3),

i, if n ≡ 2 (mod 3),

(1)

where η ∈ Z+. We can relate these sequences to the well-known classic Balancing sequence by

xτ
n =


(−1)

n+3
3 Bnϵ(τ + 2), if n ≡ 0 (mod 3),

(−1)
n−1
3 Bn, if n ≡ 1 (mod 3),

(−1)
n−2
3 Bnϵ(τ + 1), if n ≡ 2 (mod 3),
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where τ = 1, 2, 3 and ϵ(τ) is defined in Equation (1). We can then write the quaternion-type
cyclic-balancing sequences

Gτ =

[
−204 35ϵ(τ + 2)

35ϵ(τ + 2) 6

]
for τ = 1, 2, 3. (2)

By mathematical induction on n, we find that

(Gτ )
n =

[
xτ
3n+1 xτ

3n

xτ
3n −xτ

3n−1ϵ(τ + 1)

]
for τ = 1, 2, 3, (3)

where n ≥ 1.

Now we obtain the Cassini formula for the quaternion-type cyclic-balancing sequences. By
using the determinant function and Equations (2), (3), we have

−xτ
3n+1x

τ
3n−1ϵ(τ + 1)− (xτ

3n)
2 = 1 for τ = 1, 2, 3. (4)

Lemma 2.1. The recurrence relations for the {xτ
n} are as follows:

xτ
n = −198xτ

n−3 − xτ
n−6,

where n ≥ 6 and τ = 1, 2, 3.

Proof. The proof will only be done for case τ = 1, the others are done similarly.
By Definition 2.1, we get 

x1
3n = 6kx1

3n−1 − jx1
3n−2,

x1
3n+1 = 6jx1

3n − ix1
3n−1,

x1
3n+2 = 6ix1

3n+1 − kx1
3n.

Thus, we have

x1
3n+2 = 6ix1

3n+1 − kx1
3n

= 35kx1
3n + 6x1

3n−1

= 6x1
3n−1 + 35k

(
6kx1

3n−1 − jx1
3n−2

)
= −204x1

3n−1 − k35jx1
3n−2.

Then, since 35jx1
3n−2 = k

(
6x1

3n−1 − x1
3n−4

)
, we obtain

x1
3n+2 = −198x1

3n−1 − x1
3n−4. (5)

Similarly, we can write

x1
3n+1 = 6jx1

3n − ix1
3n−1

= 35ix1
3n−1 + 6x1

3n−2

= 6x1
3n−2 + 35i

(
6ix1

3n−2 − kx1
3n−3

)
= −204x1

3n−2 − i35kx1
3n−3.
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And then, since k35x1
3n−3 = i

(
6x1

3n−2 − x1
3n−5

)
, we acquire

x1
3n+1 = −198x1

3n−2 − x1
3n−5. (6)

Similarly, we have

x1
3n = 6kx1

3n−1 − jx1
3n−2

= 35jx1
3n−2 + 6x1

3n−3

= 6x1
3n−3 + 35j

(
6jx1

3n−3 − ix1
3n−4

)
= −204x1

3n−3 − j35ix1
3n−4.

And then, since 35ix1
3n−4 = j

(
6x1

3n−3 − x1
3n−6

)
, we get

x1
3n = −198x1

3n−3 − x1
3n−6. (7)

From Equations (5), (6) and (7), we obtain x1
n = −198x1

n−3 − x1
n−6, as required.

In the following theorem, we develop the generating functions for the quaternion-type cyclic-
balancing sequences.

Theorem 2.1. The generating functions of the {xτ
n} are

∞∑
n=0

xτ
nt

n =
t+ 6ϵ(τ + 1)t2 + 35ϵ(τ + 2)t3 − 6t4 − ϵ(τ + 1)t5

1 + 198t3 + t6
,

where τ = 1, 2, 3.

Proof. Assume that f(t) is the generating function of the {xτ
n} for τ = 1, 2, 3. Then we have

f (t) =
∞∑
n=0

xτ
nt

n

From Lemma 2.1, we obtain

f (t) = xτ
0 + xτ

1t+ xτ
2t

2 + xτ
3t

3 + xτ
4t

4 + xτ
5t

5 +
∞∑
n=6

(
−198xτ

n−3 − xτ
n−6

)
tn

= xτ
1t+ xτ

2t
2 + xτ

3t
3 + xτ

4t
4 + xτ

5t
5 − 198

(
f(t)− xτ

0 − xτ
1t− xτ

2t
2
)
t3 − f(t)t6 .

Now rearrangement of the equation implies that

f(t) =
xτ
1t+ xτ

2t
2 + xτ

3t
3 + (xτ

4 + 198xτ
1) t

4 + (xτ
5 + 198xτ

2) t
5

1 + 198t3 + t6
,

which is equal to the
∞∑
n=0

xτ
nt

n in the Theorem.
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3 The quaternion-type cyclic-balancing sequences modulo m

In this section, we study quaternion-type cyclic-balancing sequences modulo m. Then, we give
the relationships among the lengths of periods of the quaternion-type cyclic-balancing sequences
of the first, second and third kinds modulo m and the generating matrices of these sequences.

If we reduce the quaternion-type cyclic-balancing sequences of the first, second and third
kinds modulo m, taking least non-negative residues, then we obtain the following recurrence
sequences:

{xτ
n (m)} = {xτ

1 (m) , xτ
2 (m) , . . . }

for every integer 1 ≤ τ ≤ 3, xτ
u (m) is used to mean the u-th element of the τ -th quaternion-type

cyclic-balancing sequence when read modulo m. We note here that the recurrence relations in the
sequences {xτ

n (m)} and {xτ
n} are the same.

Theorem 3.1. The sequences {xτ
n (m)} are periodic, and the lengths of their periods are divisible

by 3.

Proof. Let us consider the quaternion-type cyclic-balancing sequence of the first kind {x1
n} as an

example. Consider the set

Q = {(q1, q2) | qu’s are quaternions au + bui+ cuj + duk, where au, bu, cu and du

are integers such that 0 ≤ au, bu, cu, du ≤ m− 1 and u ∈ {1, 2}} .

Suppose that the cardinality of the set Q is denoted by the notation |Q|. Since the set Q is
finite, there are |Q| distinct 2-tuples of the quaternion-type cyclic-balancing sequences of the first
kind {x1

n} modulo m. Thus, it is clear that at least one of these 2-tuples appears twice in the
sequence {x1

n (m)}. Let x1
α (m) ≡ x1

β (m) and x1
α+1 (m) ≡ x1

β+1 (m). If β − α ≡ 0 (mod 3),
then we get x1

α+2 (m) ≡ x1
β+2 (m), x1

α+3 (m) ≡ x1
β+3 (m) , . . . . So, it is easy to see that the

subsequence following this 2-tuple repeats; that is, {x1
n (m)} is a periodic sequence and the length

of its period must be divisible by 3.
The proofs for the sequences {x2

n} and {x3
n} are directly similar to the above ones and are

omitted.

We next denote the lengths of periods of the sequences {xτ
n (m)} by lxτ

n
(m) .

Consider the matrices

A1 =

[
6i −k

1 0

]
, A2 =

[
6k −j

1 0

]
and A3 =

[
6j −i

1 0

]
.

Suppose that G1 = A3A2A1, G2 = A2A1A3 and G3 = A1A3A2. Using the above, we define
the following matrices:

(M1)
n=


(G1)

n
3 , if n ≡ 0 (mod 3),

A1 (G1)
n−1
3 , if n ≡ 1 (mod 3),

A2A1 (G1)
n−2
3 , if n ≡ 2 (mod 3),

(M2)
n=


(G2)

n
3 , if n ≡ 0 (mod 3),

A3 (G2)
n−1
3 , if n ≡ 1 (mod 3),

A1A3 (G2)
n−2
3 , if n ≡ 2 (mod 3),
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(M3)
n=


(G3)

n
3 , if n ≡ 0 (mod 3),

A2 (G3)
n−1
3 , if n ≡ 1 (mod 3),

A3A2 (G3)
n−2
3 , if n ≡ 2 (mod 3).

Then we get

(Mτ )
n

(
1

0

)
=

(
xτ
n+1

xτ
n

)
,

where τ is an integer such that 1 ≤ τ ≤ 3. We easily derive that detA1 = k, detA2 = j and
detA3 = i. Therefore, we immediately deduce that lxτ

n
(m) is the smallest positive integer α such

that (Mτ )
α ≡ I (mod m) for every positive integer m.

4 The quaternion-type cyclic-balancing sequences in groups

In this section, we define three different quaternion-type cyclic-balancing sequences in finite
groups. Subsequently, we examine the quaternion-type cyclic-balancing orbits of the first, second
and third kinds of the generalized quaternion group. Finally, we give a specific example for the
first-type sequences of quaternion group Q8.

Let G be a 2-generator group and let

X = {(x1, x2) ∈ G×G | ⟨{x1, x2}⟩ = G} .

The notation (x1, x2) is said to be a generating pair for G.

Definition 4.1. Let G be a 2-generator group. For the generating pair (x, y), we define the
quaternion-type cyclic-balancing orbits of the first, second and third kinds of G, as follows,
respectively:

a1n=


(a1n−2)

−j(a1n−1)
6k, if n ≡ 0 (mod 3),

(a1n−2)
−i(a1n−1)

6j, if n ≡ 1 (mod 3),

(a1n−2)
−k(a1n−1)

6i, if n ≡ 2 (mod 3),

a2n=


(a2n−2)

−k(a2n−1)
6i, if n ≡ 0 (mod 3),

(a2n−2)
−j(a2n−1)

6k, if n ≡ 1 (mod 3),

(a2n−2)
−i(a2n−1)

6j, if n ≡ 2 (mod 3),

a3n=


(a3n−2)

−i(a3n−1)
6j, if n ≡ 0 (mod 3),

(a3n−2)
−k(a3n−1)

6i, if n ≡ 1 (mod 3),

(a3n−2)
−j(a3n−1)

6k, if n ≡ 2 (mod 3),

for n ≥ 2, with initial conditions aτ0 = x and aτ1 = y (1 ≤ τ ≤ 3), where the following conditions
hold for every x, y ∈ G:

(i). Let q = a + bi + cj + dk such that a, b, c and d are integers and let e be the identity of G,
then:

∗ xq = xa (mod |x|)+ b (mod |x|)i+ c (mod |x|)j+ d (mod |x|)k

= xa (mod |x|) xb (mod |x|)i xc (mod |x|)j xd (mod |x|)k.

∗ (xu)a = (xa)u, where u ∈ {i, j, k} and a is an integer.

∗ eq = e and x0 + 0i + 0j + 0k = e.
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(ii). Let q1 = a1 + b1i + c1j+d1k and q2 = a2 + b2i+c2j + d2k, such that a1, b1, c1, d1, a2, b2,
c2, d2 are integers, then (xq1xq2)−1 = x−q2x−q1 .

(iii). If xy ̸= yx, then xuyu ̸= yuxu for u ∈ {i, j, k}.

(iv). (xy)u = yuxu for u ∈ {i, j, k}.

(v). (xu1yu2)u3 = xu3u1yu3u2 , (xyu1)u2 = xu2yu2u1 and (xu1y)u2 = xu2u1yu2 for u1, u2, u3

∈ {i, j, k}, and so (xu1yu1)u1 = x−1y−1.

(vi). For u1, u2 ∈ {i, j, k} such that u1 ̸= u2, xu1yu2 = yu2xu1 , xyu1 = yu1x, xu1y = yxu1 , and
so (xyu1)u1 = xu1y−1 and (xu1y)u1 = x−1yu1 .

Let the notation Bq,τ
(x,y) (G) denote the τ -th quaternion-type cyclic-balancing orbit of the group

G for the generating pair (x, y). From the definition of the orbit Bq,τ
(x,y) (G) it is clear that the length

of the period of this sequence in a finite group depends on the chosen generating pair and the order
in which the assignments of x, y are made.

Theorem 4.1. Let G be a 2-generator group. If G is finite, then the quaternion-type cyclic-
balancing orbits of the first, second and third kinds of G are periodic and the lengths of their
periods are divisible by 3.

Proof. Let us consider the second quaternion-type cyclic-balancing orbit of the group G. We take
the set

S =
{
(s1)

a1(mod |s1| )+b1(mod |s1| )i+c1(mod |s1| )j+d1(mod |s1| )k ,

(s2)
a2(mod |s2| )+b2(mod |s2| )i+c2(mod |s2| )j+d2(mod |s2| )k

| s1, s2 ∈ G and a1, a2, b1, b2, c1, c2, d1, d2 ∈ Z
}
.

Since the group G is finite, S is a finite set. Hence, there exists v > u such that a2u = a2v and
a2u+1 = a2v+1 for any u ≥ 0. If v − u ≡ 0 (mod 3), then we get a2u+2 = a2v+2, a2u+3 = a2v+3, . . . .

Because of the repetition, for all generating pairs the sequence Bq,2
(x,y) (G) is periodic and the

length of its period must be divisible by 3.
The proofs for the orbits Bq,1

(x,y) (G) and Bq,3
(x,y) (G) are again similar to the above and are

omitted.

We next denote the lengths of the periods of the orbits Bq,τ
(x,y) (G) by LBq,τ

(x,y) (G).
We shall now address the lengths of the periods of the orbits Bq,1

(x,y) (Q2m+1) , Bq,2
(x,y) (Q2m+1)

and Bq,3
(x,y) (Q2m+1) in the generalized quaternion group Q2m+1 with respect to the generating pairs

(x, y).

Theorem 4.2. Consider the generalized quaternion group Q2m+1 of order 2m is defined by the
presentation Q2m+1 = ⟨x, y | x2m = y4 = 1, x2m−1

= y2, y−1xy = x−1⟩. Then

LBq,1
(x,y) (Q2m+1) = LBq,2

(x,y) (Q2m+1) = LBq,3
(x,y) (Q2m+1) = 3.2m for m ≥ 2.

208



Proof. Firstly, we calculate the lengths of the periods of the first quaternion-type cyclic-balancing
orbits Bq,1

(x,y) (Q2m+1). The sequence Bq,1
(x,y) (Q2m+1) is

a10 = x, a11 = y, a12 = y2ix−k, a13 = y3jx6, a14 = x35j, a15 = y3ix204k, a16 = y2jx−1189, . . .

a112 = x−46611179, a113 = yx−271669860j, a114 = y2ix−1583407981k, a115 = y3jx9228778026, . . .

a124 = x−71631910824649559, a125 = yx−417501372047787700j, a126 = y2ix−2087506860238938400k, . . .

...

a112u = x−B12u−1 , a112u+1 = yx−B12uj, a112u+2 = y2ix−B12u+1k, a112u+3 = y3jxB12u+2 ,

a112u+4 = xB12u+3j, a112u+5 = y3ixB12u+4k, a112u+6 = y2jx−B12u+5 , a112u+7 = y3x−B12u+6j,

a112u+8 = x−B12u+7k, a112u+9 = yjxB12u+8 , a112u+10 = y2xB12u+9j, a112u+11 = yixB12u+10k.

where Bn denotes the n-th member of the balancing sequence B0 = a, B1 = b, Bn+1 =

6Bn − Bn−1 (n ≥ 1). In [12], Panda and Rout showed that the length of period of the sequence
{Bn} (mod 2m) is 2m. So we get LBq,1

(x,y) (Q2m+1) = lcm [12, 2m] = 3.2m for every m ≥ 2.
From the above, we easily see that LBq,1

(x,y) (Q2m+1) = 3.2m.
The proofs for the orbits Bq,2

(x,y) (Q2m+1) and Bq,3
(x,y) (Q2m+1) are similar to the above and are

omitted.

Now, for the generating pair (x, y), we give the first quaternion-type cyclic-balancing orbits
of the quaternion group Q8 = ⟨x, y | x4 = 1, x2 = y2, y−1xy = x−1⟩, which is a non-Abelian
group of order eight.

Example 4.1. The sequence Bq,1
(x,y) (Q8) is

x, y, y2ix−k, y−jx2, x−j, y−i, y2jx−1, y−1x2j, xk, yj, y2xj,

yix2k, x, y, y2ix−k, y−jx2, . . . ,

which implies that LBq,1
(x,y) (Q8) = 12.
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