Ahmet Tekcan and Ecem Akgüç
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 31, 2025, Number 1, Pages 113–126
DOI: 10.7546/nntdm.2025.31.1.113-126
Full paper (PDF, 232 Kb)
Details
Authors and affiliations
Ahmet Tekcan
![]()
Department of Mathematics, Faculty of Science, Bursa Uludag University, Bursa, Türkiye
Ecem Akgüç
![]()
Department of Mathematics, Faculty of Science, Bursa Uludag University, Bursa, Türkiye
Abstract
In this work, we determined the general terms of almost neo cobalancing numbers, almost Lucas-neo cobalancing numbers and almost neo cobalancers in terms of cobalancing and Lucas-cobalancing numbers. We also deduced some results on relationship with Pell, Pell–Lucas, triangular and square triangular numbers. Further we formulate the sum of first
terms of these numbers.
Keywords
- Balancing numbers
- Cobalancing numbers
- Neo cobalancing numbers
- Pell equations
- Triangular numbers
- Square triangular numbers
- Set of representations
- Pell numbers
2020 Mathematics Subject Classification
- 11B37
- 11B39
- 11D09
- 11D79
References
- Barbeau, E. J. (2003). Pell’s Equation. Springer-Verlag, New York.
- Behera, A., & Panda, G. K. (1999). On the square roots of triangular numbers. The Fibonacci Quarterly, 37(2), 98–105.
- Chailangka, N., & Pakapongpun, A. (2021). Neo balancing numbers. International Journal of Mathematics and Computer Science, 16(4), 1653–1664.
- Dash, K. K., Ota, R. S., & Dash, S. (2012). t-Balancing numbers. International Journal of Contemporary Mathematical Sciences, 7(41), 1999–2012.
- Flath, D. E. (1989). Introduction to Number Theory. Wiley.
- Gözeri, G. K., Özkoç, A. & Tekcan, A. (2017). Some algebraic relations on balancing numbers. Utilitas Mathematica, 103, 217–236.
- Jacobson, M., & Williams, K. (2009). Solving the Pell Equation. CMS Books in
Mathematics. Springer Science, Business Media, LLC. - Kovacs, T., Liptai, K., & Olajos, P. (2010). On (a, b)-balancing numbers. Publicationes Mathematicae Debrecen, 77(3-4), 485–498.
- Liptai, K. (2004). Fibonacci balancing numbers. The Fibonacci Quarterly, 42 (4), 330–340.
- Liptai, K. (2006). Lucas Balancing numbers. Acta Mathematica Universitatis Ostraviensis, 14, 43–47.
- Liptai, K., Luca, F., Pinter, A. & Szalay, L. (2009). Generalized balancing numbers. Indagationes Mathematicae, 20(1), 87–100.
- Olajos, P. (2010). Properties of balancing, cobalancing and generalized balancing numbers. Annales Mathematicae et Informaticae, 37, 125–138.
- Panda, A. K. (2017). Some variants of the balancing sequences. Ph.D. thesis, National Institute of Technology Rourkela, India.
- Panda, G. K., Komatsu, T., & Davala, R. K. (2018). Reciprocal sums of sequences involving balancing and Lucas-balancing numbers. Mathematical Reports, 20(70), 201–214.
- Panda, G. K., & Panda, A. K. (2015). Almost balancing numbers. Journal of the Indian Mathematical Society, 82(3–4), 147–156.
- Panda, G. K., & Ray, P. K. (2005). Cobalancing numbers and cobalancers. International Journal of Mathematics and Mathematical Sciences, 8, 1189–1200.
- Panda, G. K., & Ray, P. K. (2011). Some links of balancing and cobalancing numbers with Pell and associated Pell numbers. Bulletin of the Institute of Mathematics, Academia Sinica, 6(1), 41–72.
- Ray, P. K. (2009). Balancing and cobalancing numbers. Ph.D. thesis, Department of Mathematics, National Institute of Technology, Rourkela, India.
- Ray, P. K. (2015). Balancing and Lucas-balancing sums by matrix methods. Mathematical Reports, 17(67), 225–233.
- Santana, S. F., & Diaz Barrero, J. L. (2006). Some properties of sums involving Pell numbers. Missouri Journal of Mathematical Science, 18(1), 33–40.
- Szalay, L. (2007). On the resolution of simultaneous Pell equations. Annales Mathematicae et Informaticae, 34, 77–87.
- Tekcan, A. (2019). Almost balancing, triangular and square triangular numbers. Notes on Number Theory and Discrete Mathematics, 25(1), 108–121.
- Tekcan, A. (2019). Sums and spectral norms of all Almost balancing numbers. Creative Mathematics and Informatics, 28(2), 203–214.
- Tekcan, A. Almost neo balancing numbers. Submitted.
- Tekcan, A., & Aydın, S. (2021). On t-balancers, t-balancing numbers and Lucas t-balancing numbers. Libertas Mathematica, 41(1), 37–51.
- Tekcan, A., & Erdem, A. (2020). t-Cobalancing numbers and t-cobalancers. Notes on Number Theory and Discrete Mathematics, 26(1), 45–58.
- Tekcan, A., & Yıldız, M. (2021). Balcobalancing numbers and balcobalancers. Creative Mathematics and Informatics, 30(2), 203–222.
- Tekcan, A., & Yıldız, M. (2022). Balcobalancing numbers and balcobalancers II. Creative Mathematics and Informatics, 31(2), 247–258.
- Tekcan, A., & Yıldız, M. Neo cobalancing numbers. Submitted.
- Tengely, S. (2013). Balancing numbers which are products of consecutive integers. Publicationes Mathematicae Debrecen, 83(1–2), 197–205.
Manuscript history
- Received: 24 June 2024
- Revised: 9 April 2025
- Accepted: 12 April 2025
- Online First: 14 April 2025
Copyright information
Ⓒ 2025 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Tekcan, A. (2019). Almost balancing, triangular and square triangular numbers. Notes on Number Theory and Discrete Mathematics, 25(1), 108–121.
- Tekcan, A., & Erdem, A. (2020). t-Cobalancing numbers and t-cobalancers. Notes on Number Theory and Discrete Mathematics, 26(1), 45–58.
Cite this paper
Tekcan, A., & Akgüç, E. (2025). Almost neo cobalancing numbers. Notes on Number Theory and Discrete Mathematics, 31(1), 113-126, DOI: 10.7546/nntdm.2025.31.1.113-126.
