Double domination number of graphs generated from unary products

M. Magima and P. Ragukumar
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 3, Pages 640–653
DOI: 10.7546/nntdm.2024.30.3.640-653
Full paper (PDF, 251 Kb)

Details

Authors and affiliations

M. Magima
Department of Mathematics, Vellore Institute of Technology
Vellore, Tamil Nadu, India – 632014

P. Ragukumar
Department of Mathematics, Vellore Institute of Technology
Vellore, Tamil Nadu, India – 632014

Abstract

A subset S of V(G) is a double dominating set of a graph G if S dominates every vertex of G at least twice. The minimum cardinality of a double dominating set denoted by \gamma_{2\times}(G), is the double domination number of G. In this paper, we identified the double domination number of graphs generated by applying various unary operations on standard graph classes.

Keywords

  • Domination
  • Double domination
  • Unary products

2020 Mathematics Subject Classification

  • 05C69
  • 05C76

References

  1. Aytaç, A., & Mutlu, A. (2022). Double domination in shadow graphs. Bulletin of
    International Mathematical Virtual Institute, 12(2), 345–352.
  2. Aytaç, A., & Mutlu, A. (2023). Double domination number of the shadow (2, 3)-distance graphs. Malaya Journal of Matematik, 11(02), 228–238.
  3. Bondy, J. A., & Murty, U. S. R. (1976). Graph Theory with Applications (Vol. 290). London: Macmillan.
  4. Cabrera-Martínez A., & Rodríguez-Velázquez, J. A. (2021). A note on double domination in graphs. Discrete Applied Mathematics, 300, 107–111.
  5. Cabrera-Martínez, A., & Estrada-Moreno, A. (2023). Double domination in rooted product graphs. Discrete Applied Mathematics, 339, 127–135.
  6. Chellali, M. (2006). A note on the double domination number in trees. AKCE International Journal of Graphs and Combinatorics, 3(2), 147–150.
  7. Cvetkovic, D. M. (1973). Spectrum of the total graph of a graph. Publications de l’Institut Mathematique (Beograd), 16(30), 49–52.
  8. Harary, F., & Haynes, T. W. (2000). Double domination in graphs. Ars Combinatoria, 55, 201–213.
  9. Harary, F., & Haynes, T. W. (1996). Nordhaus–Gaddum inequalities for domination in graphs. Discrete Mathematics, 155(1–3), 99–105.
  10. Haynes, T. W., Hedetniemi, S. T., & Henning, M. A. (Eds.). (2020). Topics in Domination in Graphs (Vol. 64). Cham: Springer.
  11. Haynes, T. W., Hedetniemi, S., & Slater, P. (2013). Fundamentals of Domination in Graphs. Boca Raton: CRC Press.
  12. Jayasekaran, C., & Prabavathy, V. (2018). A characterisation of duplication self vertex switching in graphs. International Journal of Pure and Applied Mathematics, 118(2), 149–156.
  13. Laali, A. F., Javadi, H. H. S., & Kiani, D. (2016). Spectra of generalized corona of graphs. Linear Algebra and Its Applications, 493, 411–425.
  14. West, D. B. (2001). Introduction to Graph Theory (Vol. 2). Upper Saddle River: Prentice Hall.
  15. Xuegang, C., & Liang, S. (2005). Some new results on double domination in graphs. Journal of Mathematical Research and Exposition-Chinese Edition, 25(3), 451–456.

Manuscript history

  • Received: 13 March 2024
  • Revised: 24 October 2024
  • Accepted: 25 October 2024
  • Online First: 25 October 2024

Copyright information

Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Magima, M., & Ragukumar, P. (2024). Double domination number of graphs generated from unary products. Notes on Number Theory and Discrete Mathematics, 30(3), 640-653, DOI: 10.7546/nntdm.2024.30.3.640-653

Comments are closed.