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Abstract: A subset S of V (G) is a double dominating set of a graph G if S dominates every
vertex of G at least twice. The minimum cardinality of a double dominating set denoted by
γ2×(G), is the double domination number of G. In this paper, we identified the double domination
number of graphs generated by applying various unary operations on standard graph classes.
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1 Introduction

All graphs we considered are finite, simple and undirected. Let G = (V,E) be a simple
graph with no isolated vertices. The open neighborhood of a vertex v ∈ V (G) is the set
N(v) = {u ∈ V (G)|uv ∈ E(G)} and the closed neighborhood of v is the set N [v] = N(v)∪v. A
vertex of degree 1 is called a pendant vertex and the vertex adjacent to a pendant vertex is called a
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support vertex. A vertex that is adjacent to all other vertices of a graph is called a universal vertex
of the graph. For graph theory terminology and notation, we in general follow [3, 14].

A subset D of V (G) is a dominating set of G if every vertex in V−D is adjacent to some vertex
in D. The domination number of G denoted by γ(G) is the minimum cardinality of a dominating
set of G [11]. For more details on domination in graphs, we refer the book, Fundamentals of
domination in graphs [11]. Frank Harary and Teresa Haynes [8, 9] introduced the concept of
double domination and double domination number of graphs. A subset S of V (G) is a double
dominating set of a graph G if S dominates every vertex of G at least twice. Equivalently, if
|N [v]∩ S| ≥ 2 ∀v ∈ V (G), then S is a double dominating set of G. The minimum cardinality of
a double dominating set denoted by γ2×(G) is the double domination number of G.

A detailed survey on double domination in graphs can be found in [10]. One of its chapters,
Multiple domination by Hansberg and Volkmann provides an overview of all the relevant research
results on double domination that have been found up to 2020. Abel Cabrera Martinez and Juan
Alberto Rodriguez Velazquez [4] have improved some results on double domination included in
the book [10]. Aysun Aytan and Aysen Mutlu [1] have studied the double domination of shadow
graphs of some graphs such as cycle, path, star, complete bipartite, and wheel. In [2] the authors
have examined the double domination parameter for some shadow distance related graphs. Abel
Cabrera Martinez and Alejandro Estrada Moreno [5] have explored this domination parameter in
the rooted product of graphs. Up to our knowledge, no one had explored the double domination
number on unary product of graphs. This motivated us to explore how the double domination
number gets affected if we apply unary operations on various classes of graphs.

The objective of this study is to analyze this domination parameter in the unary product of
graphs. In section 2 we provide some preliminary results. In section 3 we obtain some main
results on double domination number of unary product of graphs.

2 Some preliminary results

The following table shows the double domination number of various standard graph classes.

Table 1. Double domination number of various standard graph classes

Graph class γ2×(G) Reference
Cn ⌈2n

3
⌉ C. Xuegang and S. Liang [15]

Pn ⌈2(n+1)
3

⌉ C. Xuegang and S. Liang [15]
K1,n 1 + n C. Xuegang and S. Liang [15]
Km,n 4 F. Harary and T. W. Haynes [8]
Kn 2 F. Harary and T. W. Haynes [8]

Observation 2.1. [6] The double dominating set of a graph G must contain all pendant vertices
and support vertices of G.

Observation 2.2. [9] Let G be a graph of order n ≥ 2 without isolated vertices. Then γ2×(G) = 2

if and only if G has two universal vertices.
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Observation 2.3. Let G = Sr,t be a double star graph with r + t vertices. Then γ2×(G) = r + t.

Proof. Since, every vertex of G is either a pendant vertex or a support vertex, the proof follows
from Observation 1.

Theorem 2.1. Let G = Kp,q,r be a complete tripartite graph of order p+ q+ r where, p ≤ q ≤ r.
Then

γ2×(G) =


2, if p = 1; q = 1; r ≥ 1

1 + q, if p = 1; q, r > 1

p+ 1, if p, q, r ≥ 2

Proof. Let G be a complete tripartite graph with p+q+r vertices, {u1, u2, . . . , up, v1, v2, . . . , vq,

w1, w2, . . . , wr}.

Case 1. γ2×(G) = 2; when p = 1, q = 1, r > 1

In this case, G has two universal vertices u1, v1. The proof of this follows from Observation 2.

Case 2. γ2×(G) = 1 + q; p = 1; q, r > 1

In this case, G has one universal vertex u1. Consider the set S = {u1, v1, v2, . . . , vq}. This S

dominates every vertex of G at least twice. Therefore, S is a double dominating set of G. Here,
|S| = 1 + q. Now to prove S is the minimum double dominating set of G. Let |S| < 1 + q

that is |S| = q. Without loss of generality, let S = {u1, v1, v2, . . . , vq−1} since, u1 is a universal
vertex S must contain u1. This set dominates every vertex of G at least twice except vq since,
vq is dominated only once by u1. So, S must contain vq. Thus, S = {u1, v1, . . . , vq}. Hence,
γ2×(G) = 1 + q.

Case 3. γ2×(G) = p+ 1; p, q, r ≥ 2

In this case, G has no universal vertex. Consider the set S = {u1, u2, . . . , up, vi} for any
i = 1, 2, . . . , q or S = {u1, u2, . . . , up, wk} for any k = 1, 2, . . . , r. This set dominates every
vertex of G at least twice. Therefore, S is a double dominating set of G. Here, |S| = p+ 1. Now
to prove S is the minimum double dominating set of G. Let |S| < p+ 1 that is |S| = p. Without
loss of generality, let S = {u1, u2, . . . , up}, this S dominates every vertex of G at least twice
except {ui}∀i = 1, 2, . . . , p since, |N(ui ∩ S)| < 2. Therefore S must contain either vi for any
i = 1, 2, . . . , q; or wk for any k = 1, 2, . . . , r to dominate {u1, u2, . . . , up} at least twice. Thus,
|S| = p+ 1. Hence, γ2×(G) = p+ 1.

In the next section we identify the impact of various unary operations on double domination
number of some standard classes of graphs.

2.1 Unary operations on graphs

Graph operations are operations which produce new graphs from initial graphs. They include both
unary and binary operations. Unary operations create a new graph from a single graph. Although
there are various unary operations in the literature, we concentrate on total graph of a graph,
generalised corona of a graph, Myceilskian of a graph, duplication of a vertex and subdivision of
edges of a graph.
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2.2 Total graph operation

Definition 2.1. [7] (Total graph, T (G)) The total graph, T (G) of a graph G is the graph whose
set of vertices is the union of the set of vertices and of the set of edges of G, with two vertices of
T (G) being adjacent if and only if the corresponding elements of G are adjacent or incident.

For example, consider the cycle graph C4.

v1 v2

v3v4

v1 v2

v3v4

u1

u2

u3

u4

Figure 1. C4 and T (C4)

Table 2. Impact of total graph operation on double domination number of connected graphs

Graph class γ2×(G) γ2×(T (G)) |V (G)| |V (T (G))|
Cn ⌈2n

3
⌉ n n 2n

Pn ⌈2(n+1)
3

⌉ n n 2n− 1

Wn ⌈n
3
⌉+ 1 n+ 1 n+ 1 3n+ 1

Km,n 4 m+ n m+ n m(n+ 1) + n

Kn 2 n n 2n+n(n−1)
2

K1,n 1 + n 1 + n n+ 1 2n+ 1

Sr,t r + t r + t r + t 2(r + t)− 2

Theorem 2.2. Let G be a connected graph with n vertices, then γ2×(T (G)) = n.

Proof. Let G be a graph with n vertices {v1, v2, . . . , vn} and m edges {e1, e2, . . . , em}. For every
edge {ei; 1 ≤ i ≤ m}, add a new vertex {ui; 1 ≤ i ≤ m} and join the new vertex to the end
vertices of the corresponding edge {ei; 1 ≤ i ≤ m} to get T (G). Observe that, deg(ui) = 2

for any i such that 1 ≤ i ≤ m. Therefore, to dominate every vertex of G at least twice all
{vj; 1 ≤ j ≤ n} must be included. This implies that the set S = {v1, v2, . . . , vn} is a double
dominating set of T (G) and |S| = n. Now to prove S is a minimum double dominating set of
T (G). Let |S| < n that is |S| = n − 1. Without loss of generality let S = {v1, v2, . . . , vn−1}.
Then, the vertices um−1, um are dominated only once so, we should include either um or vn. Thus,
S is a minimum double dominating set of T (G). Hence, γ2×(T (G)) = n.
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2.3 Generalised corona of a graph

Definition 2.2. [13] (Generalised corona of a graph, G ◦ Hi). Given the simple graphs G,
H1, . . . , Hn, where n = |V (G)|, the generalized corona, denoted G ◦Hi; 1 ≤ i ≤ n is the graph
obtained by taking one copy of graphs G,H1, . . . , Hn and joining the i-th vertex of G to every
vertex of Hi.

For example, consider the complete bipartite graph K1,3.

v1

v2

v3

v4

v1

v2

v3

v4

u1,1

u1,2

u2,1

u2,2

u3,1

u3,2

u4,1

v4,2

Figure 2. (K1,3) and (K1,3 ◦K1)

Table 3. Impact of generalised corona operation on double domination number
of connected graphs

Graph class γ2×(G) γ2×(G ◦K1) |V (G)| |V (G ◦K1)|
Cn ⌈2n

3
⌉ n(k + 1) n n(k + 1)

Pn ⌈2(n+1)
3

⌉ n(k + 1) n n(k + 1)

Wn ⌈n
3
⌉+ 1 (n+ 1)(k + 1) n+ 1 (n+ 1)(k + 1)

Km,n 4 (m+ n)(k + 1) m+ n (m+ n)(k + 1)

Kn 2 n(k + 1) n n(k + 1)

K1,n 1 + n (1 + n)(k + 1) n+ 1 (n+ 1)(k + 1)

Sr,t r + t (r + t)(k + 1) r + t (r + t)(k + 1)

Theorem 2.3. Let G be a connected graph with n vertices, then γ2×((G◦K1)) = n(k+1) where,
k is the number of copies of K1 added to each vertex of G.

Proof. Let {v1, v2, . . . , vn} be n vertices of G. Add k number of vertices to each vertex
{vi; i = 1, 2, . . . , n} to get (G ◦ K1). Let the new vertices added be {u1,1, u1,2, . . . , u1,k,

u2,1, u2,2, . . . , u2,k, . . . , un,1, un,2, . . . , un,k}. Thus, (G ◦ K1) contains n(k + 1) vertices. Every
vertex of (G ◦ K1) is either a pendant vertex or a support vertex. Thus, from Observation 1, a
double dominating set of (G◦K1) must contain every vertex of (G ◦K1). Hence, γ2×((G◦K1)) =

n(k + 1).
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2.4 Myceilskian operation

Definition 2.3. [14] (Myceilskian operation, µ(G)). Let G be a graph with n vertices
{v1, v2, . . . , vn}. The Mycielskian graph, µ(G) contains G itself as a subgraph, together with
n + 1 additional vertices; a vertex ui; 1 ≤ i ≤ n corresponding to each vi; 1 ≤ i ≤ n and an
extra vertex w. Each ui is connected to w by an edge.

For example, consider a path graph P4.

v1 v2 v3 v4 v1 v2 v3 v4

u1 u2 u3 u4

w

Figure 3. (P4) and µ(P4)

Table 4. Impact of Myceilskian operation on double domination number of connected graphs

Graph class γ2×(G) γ2×(µ(G)) |V (G)| |V (µ(G))|
Cn ⌈2n

3
⌉ ⌈2n

3
⌉+ 2 n 2n+ 1

Pn ⌈2(n+1)
3

⌉ ⌈2(n+1)
3

⌉+2 n 2n+ 1

Wn ⌈n
3
⌉+ 1 4 n+ 1 2n+ 3

Km,n 4 5 m+ n 2(m+n)+1

Kn 2 4 n 2n+ 1

K1,n 1 + n 4 n+ 1 2n+ 3

Sr,t r + t 5 r + t 2(r+ t)+ 1

Theorem 2.4. Let G be a connected graph of order n with a universal vertex, then
γ2×(µ(G)) = 4.

Proof. Let G be a graph with n vertices {v1, v2, . . . , vn}. Let vn be the universal vertex. Add a
new vertex ui; 1 ≤ i ≤ n to each vi; 1 ≤ i ≤ n and connect ui; 1 ≤ i ≤ n to the neighbors
of corresponding vi; 1 ≤ i ≤ n. Add an extra vertex w and connect each ui; 1 ≤ i ≤ n to w

by an edge to get µ(G). Let S be the minimum double dominating set of µ(G). Since, vn is the
universal vertex and un is the copy of vn, both are connected to every vertex vi; 1 ≤ i ≤ n−1 and
together double dominate every vertex vi; 1 ≤ i ≤ n−1 and dominate every vertex ui; 1 ≤ i ≤ n

once. Let vn, un ∈ S. To double dominate ui; 1 ≤ i ≤ n, we include w, since w is connected
to every ui; 1 ≤ i ≤ n. Now let S = {vn, un, w}. This set S dominates every vertex of µ(G) at
least twice except for vn, because N(vn) ̸= {vn, un, w}. To double dominate vn, we include vi
for any i|1 ≤ i ≤ n− 1. Thus, S = {vn, un, w, vi} for any i|1 ≤ i ≤ n− 1 is a minimum double
dominating set of µ(G) where, |S| = 4. Hence, γ2×(µ(G)) = 4.
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Theorem 2.5. Let G be a cycle graph of order n. Then γ2×(µ(G)) = γ2×(G) + 2 = ⌈2n
3
⌉+ 2.

Proof. Let G be a cycle with n vertices {v1, v2, . . . , vn}. Add a new vertex ui; 1 ≤ i ≤ n

corresponding to each vi; 1 ≤ i ≤ n and connect ui; 1 ≤ i ≤ n to the neighbors of corresponding
vi; 1 ≤ i ≤ n. Add an extra vertex w and connect each ui; 1 ≤ i ≤ n to w by an edge to get
µ(G). Therefore, µ(G) has (2n + 1) vertices {v1, v2, . . . , vn, u1, u2, . . . , un, w}. Let S be the
minimum double dominating set of G where, |S| = ⌈2n

3
⌉. Let S ′ be the double dominating set of

µ(G). Then S ⊆ S ′. Now S ′ dominates every vertex vi; 1 ≤ i ≤ n at least twice and dominates
ui; 1 ≤ i ≤ n at least once. To double dominate every ui and w, we include w, ui; for any
i|1 ≤ i ≤ n. Thus, S ′ = S ∪ {ui, w} for any i|1 ≤ i ≤ n. Hence, γ2×(µ(G)) = ⌈2n

3
⌉+ 2.

Theorem 2.6. Let G be a path graph of order n. Then γ2×(µ(G)) = γ2×(G) + 2 = ⌈2(n+1)
3

⌉+2.

Proof. Let G be a path graph with n vertices {v1, v2, . . . , vn}. Add a new vertex ui; 1 ≤ i ≤ n

corresponding to each vi; 1 ≤ i ≤ n and connect ui; 1 ≤ i ≤ n to the neighbors of corresponding
vi; 1 ≤ i ≤ n. Add an extra vertex w and connect each ui; 1 ≤ i ≤ n to w by an edge to get µ(G).
Therefore, µ(G) has (2n+ 1) vertices {v1, v2, . . . , vn, u1, u2, . . . , un, w}. Let S be the minimum
double dominating set of G where, |S| = ⌈2(n+1)

3
⌉. Then S ⊆ S ′. Now S ′ dominates every vertex

vi; 1 ≤ i ≤ n at least twice and dominates ui; 1 ≤ i ≤ n at least once. To double dominate every
ui and w, we include w, ui; for any i|1 ≤ i ≤ n. Thus, S ′ = S ∪ {ui, w} for any i|1 ≤ i ≤ n.
Hence, γ2×(µ(G)) = ⌈2(n+1)

3
⌉+ 2.

Theorem 2.7. Let G be a complete bipartite graph of order m+ n. Then γ2×(µ(G)) = 5.

Proof. Let G be a complete graph with m + n vertices {v1, v2, . . . , vm, u1, u2, . . . , un}. Add a
new vertex v′i and u′

j| 1 ≤ i ≤ m; 1 ≤ j ≤ n for each vi; 1 ≤ i ≤ m and uj; 1 ≤ j ≤ n,
respectively, and connect them to the neighbors of corresponding vi and uj , respectively. Add an
extra vertex w and connect each v′i, u

′
j; 1 ≤ i ≤ m; 1 ≤ j ≤ n to w by an edge to get µ(G).

Consider the set S = {vp, v′q, ur, u
′
t, w} for any 1 ≤ p, q ≤ m; 1 ≤ r, t ≤ n. This set dominates

every vertex of µ(G) at least twice. Therefore, S is a double dominating set of µ(G) where,
|S| = 5. Now to prove S is a minimum double dominating set, let |S| < 5. Without loss of
generality, let S = {vp, v′q, ur, u

′
t} for any 1 ≤ p, q ≤ m; 1 ≤ r, t ≤ n. This S dominates every

vertex of µ(G) at least twice but w is dominated only once. To double dominate w, we include it
in S. Thus, S is a minimum double dominating set of µ(G). Hence, γ2×(µ(G)) = 5.

Theorem 2.8. Let G be a double star graph of order r + t. Then γ2×(µ(G)) = 5.

Proof. Let G be a double star graph with r + t vertices {v1, v2, . . . , vr, u1, u2, . . . , ut}. Let vr, ut

be the two non-pendant vertices. Add a new vertex v′i and u′
j; 1 ≤ i ≤ r; 1 ≤ j ≤ t for each

vi; 1 ≤ i ≤ r and uj; 1 ≤ j ≤ t, respectively, and connect them to the neighbors of corresponding
vi and uj , respectively. Add an extra vertex w and connect each v′i, u

′
j; 1 ≤ i ≤ r; 1 ≤ j ≤ t to w

by an edge to get µ(G). Consider the set S = {vr, ut, v
′
r, u

′
t, w}. This set dominates every vertex

of µ(G) at least twice. Therefore, S is a double dominating set of µ(G) where, |S| = 5. Since,
every vertex {vi, uj, v

′
i, v

′
j; 1 ≤ i ≤ r − 1; 1 ≤ j ≤ t− 1} are of degree 2 and their neighbors are

{vr, ut, v
′
r, v

′
t, w}, S must contain these vertices and therefore S is a minimum double dominating

set of µ(G). Hence, γ2×(µ(G)) = 5.
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2.5 Duplication of a vertex

Definition 2.4. [12, 14] (Duplication of a vertex, D(vG)). Duplication of a vertex v of graph
G produces a new graph G′ by adding a new vertex v′ such that N(v′) = N(v).

For example, consider the cycle graph with 4 vertices C4.

v1 v2

v3v4

v1 v2

v3v4

u1 u2

u3u4

Figure 4. (C4) and D(vC4)

Table 5. Impact of duplication of a vertex operation on double domination number
of connected graphs

Graph class γ2×(G) γ2×(D(vG))|V (G)| |V (D(vG))|
Cn ⌈2n

3
⌉ n n 2n

Pn ⌈2(n+1)
3

⌉ n+ 2 n 2n

Wn ⌈n
3
⌉+ 1 ⌈n

2
⌉+ 1 n+ 1 2(n+ 1)

Km,n 4 4 m+ n 2(m+ n)

Kn 2 3 n 2n

K1,n 1 + n n+ 3 n+ 1 2(n+ 1)

Sr,t r + t r + t+ 2 r + t 2(r + t)

Theorem 2.9. Let G = Cn be a cycle of order n. Then, γ2×(D(vG)) = n.

Proof. Let G be a cycle with n vertices {v1, v2, . . . , vn}. For each vi; 1 ≤ i ≤ n add a new vertex
ui; 1 ≤ i ≤ n and join ui; 1 ≤ i ≤ n to the neighbors of corresponding vi; 1 ≤ i ≤ n to get
D(vG). Consider the set S = {vi}∀i = 1, 2, . . . , n. This set dominates every vertex of D(vG) at
least twice because, N(ui) = {vi, vi+1}, ∀i = 1, 2, . . . , n. Therefore, S is a double dominating
set of D(vG) and |S| = n. Also, note that deg(ui) = 2,∀i = 1, 2, . . . , n. Therefore, it is clear
that S is a minimum double dominating set of D(vG). Hence, γ2×(D(vG)) = n.

Theorem 2.10. Let G = Pn be a path of order n. Then, γ2×(D(vG)) = n+ 2.

Proof. Let G be a path graph with n vertices {v1, v2, . . . , vn}. For each vi; 1 ≤ i ≤ n add a new
vertex ui; 1 ≤ i ≤ n and join ui to the neighbors of corresponding vi to get D(vG). Here, v1 and
vn are pendant vertices, therefore, the new vertices u1 and u2 are also pendant vertices. A double
dominating set of a graph must contain all the pendant vertices and support vertices. Consider
the set S = {v1, v2, vn−1, vn, u1, un, v3, . . . , vn−2}. This set dominates every vertex of D(vG) at
least twice. Therefore, S is a double dominating set of D(vG). Here, |S| = n+2. Now to prove,
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S is a minimum double dominating set of D(vG). Let |S| < n+ 2, that is |S| = n+ 1. Without
loss of generality, let S = {v1, v2, vn−1, vn, u1, un, v3, . . . , vn−3}. This set dominates every vertex
of D(vG) at least twice but, un−1 and un−3 are dominated only once because |N(un−1 ∪ S)| < 2

and |N(un−3 ∪ S)| < 2. Thus, S = {v1, v2, . . . , vn, u1, un} is a minimum double dominating set
of D(vG). Hence, γ2×(D(vG)) = n+ 2.

Theorem 2.11. Let G = Wn be a wheel graph of order n+ 1. Then γ2×(D(vG)) = ⌈n
2
⌉+ 1.

Proof. Let G be a wheel graph with n+1 vertices {v1, v2, . . . , vn+1}. Let us assign the vertex vn+1

to be the universal vertex in the center and {v1, v2, . . . , vn} to be the vertices of the cycle. Add new
vertex ui; 1 ≤ i ≤ n+1 for each vi; 1 ≤ i ≤ n+1 and join ui to the neighbors of corresponding vi.
Here, N(u1) = {vn+1, v2, vn}, N(u2) = {vn+1, v1, v3}, N(u3) = {vn+1, v2, v4}, . . . , N(un−1) =

{vn+1, vn−2, vn}, N(un) = {vn+1, vn−1, v1}, N(un+1) = {vi}∀i = 1, 2, . . . , n. Since, vn+1 is a
universal vertex it is connected to all vi; 1 ≤ i ≤ n and so connected to all ui; 1 ≤ i ≤ n. Note
that {ui, ui+2}; 1 ≤ i ≤ n have a common neighbor vi+1; 1 ≤ i ≤ n. Therefore, to dominate
every vertex of D(vG) at least twice, minimum double dominating set S must contain vn+1 and
vi+1; 1 ≤ i ≤ n. Therefore, |S| = ⌈n

2
⌉+ 1. Thus, γ2×(D(vG)) = ⌈n

2
⌉+ 1.

Theorem 2.12. Let G = Km,n be a complete bipartite graph of order m + n where, m ≤ n and
m,n ≥ 2. Then γ2×(D(vG)) = 4.

Proof. Let G be a complete bipartite graph with m + n vertices {v1, v2, . . . , vm, u1, u2, . . . , un}.
For every vi; 1 ≤ i ≤ m and for every uj; 1 ≤ j ≤ n add a new vertex v′i; 1 ≤ i ≤ m and
u′
j; 1 ≤ j ≤ n, respectively. Join v′i and u′

j to the neighbors of corresponding vi; 1 ≤ i ≤ m and
uj; 1 ≤ j ≤ n, respectively, to get D(vG). Consider the set S = {vi, vk, uj, ul} for any i, j, k, l;

1 ≤ i, k ≤ m; 1 ≤ j, l ≤ n; i ̸= k, j ̸= l. This set dominates every vertex of D(vG) at least twice.
Therefore, S is a double dominating set of D(vG) and |S| = 4. Now to prove S is a minimum
double dominating set, let |S| < 4. Without loss of generality, let us assume that S = {vi, vk, uj}
for any i, j, k|1 ≤ i, k ≤ m; 1 ≤ j ≤ n; i ̸= k. This S dominates every vertex of D(vG) at least
twice but {vi; 1 ≤ i ≤ m} are dominated only once. Thus, S is a minimum double dominating
set of D(vG). Hence, γ2×(D(vG)) = 4.

Theorem 2.13. Let G = K1,n be a star graph of order 1 + n. Then γ2×(D(vG)) = n+ 3.

Proof. Let G be a star graph with n+1 vertices {v1, v2, . . . , vn, u} where, u is the universal vertex
and {v1, v2, . . . , vn} are all pendant vertices. Let v′i; 1 ≤ i ≤ n and u′ be the new vertices added
to each vi; 1 ≤ i ≤ n and u, respectively. Make v′i adjacent to the neighbors of corresponding
vi and make u′ adjacent to the neighbors of u. In D(vG), all v′i; 1 ≤ i ≤ n are pendant vertices
and u is their support vertex. Therefore, from Observation 1, the double dominating set S must
contain u and v′i; 1 ≤ i ≤ n. Consider S = {u, u′, v1, v

′
i|i = 1, 2, . . . , n}, this set dominates

every vertex of D(vG) at least twice. Now we have to prove S is a minimum double dominating
set of D(vG). Being a copy of universal vertex, u′ is adjacent to all vi; 1 ≤ i ≤ n. Note that
deg(vi) = 2;∀i = 1, 2, . . . , n in D(vG) that is N(vi) = {u, u′}∀i = 1, 2, . . . , n. Therefore, S
must contain u and u′. But u′ is dominated only once by itself. so, we include any of vi; 1 ≤ i ≤ n

to dominate u′ at least twice. This implies, S is a minimum double dominating set of D(vG)

where, |S| = n+ 3. Thus, γ2×(D(vG)) = γ2×(G) + 2 = n+ 3.
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Theorem 2.14. Let G = Kn be a complete graph of order n. Then for n ≥ 3, γ2×(D(vG)) = 3.

Proof. Let G be a complete graph with n vertices {v1, v2, . . . , vn}. For every vertex vi; 1 ≤ i ≤ n

add a new vertex ui; 1 ≤ i ≤ n and join ui to the neighbors of corresponding vi. Consider
S = {vi, vj, vk} for any i, j, k|1 ≤ i, j, k ≤ n; i ̸= j ̸= k}, this set dominates every vertex
of D(vG) at least twice. Thus, S is a double dominating set of D(vG) and |S| = 3. Now to
prove S is the minimum double dominating set of D(vG), let |S| < 3, that is |S| = 2. Without
loss of generality, let S = {vi, vj} for any i, j|1 ≤ i, j ≤ n; i ̸= j. This set dominates every
vertex of D(vG) at least twice but the copies of vi, vj for any i, j|1 ≤ i, j ≤ n; i ̸= j that is
ui, uj for any i, j|1 ≤ i, j ≤ n; i ̸= j are dominated only once. Therefore we include vk for
any k = 1, 2, . . . , n|k ̸= i, j. Thus S is a minimum double dominating set of D(vG). Hence,
γ2×(D(vG)) = 3.

Theorem 2.15. Let G = Sr,t be a double star graph with r + t vertices. Then γ2×(D(vG)) =

r + t+ 2.

Proof. Let G be a double star graph with r + t vertices {u1, u2, . . . , ur, v1, v2, . . . , vt}. A double
star graph has exactly two non pendant vertices and let them be ur and vt. Let {ui; 1 ≤ i ≤ r−1}
be pendant vertices connected to ur and {vj; 1 ≤ j ≤ t− 1} be pendant vertices connected to vt.
Now for every vertex {u1, u2, . . . , ur} and {v1, v2, . . . , vt} add a new vertex {u′

1, u
′
2, . . . , u

′
r} and

{v′1, v′2, . . . , v′t}, respectively, and join them to the neighbors of corresponding {ui; 1 ≤ i ≤ r}
and {vj; 1 ≤ j ≤ r}. Consider the set S = {u′

i, ur, vr, v
′
r; 1 ≤ i ≤ r}. This set dominates

every vertex of D(vG) at least twice. Therefore, S is double dominating set of D(vG) where,
|S| = r + t + 2. Now, we have to prove S is a minimum double dominating set. Here, all
u′
i; 1 ≤ i ≤ r−1 are pendant vertices and ur, vr are their support vertices. So, from Observation 1,

S must contain these vertices. Also, every {ui; 1 ≤ i ≤ r − 1} and {vj; 1 ≤ j ≤ t − 1}
are vertices of degree 2 with common neighbors ur, u

′
r and vr, v

′
r, respectively. So, to double

dominate {ui; 1 ≤ i ≤ r − 1} and {vj; 1 ≤ j ≤ t − 1} ur, u
′
r and vr, v

′
r are needed. This shows

that S is a minimum double dominating set of D(vG). Hence, γ2×(D(vG)) = r + t+ 2.

2.6 Subdivision operation

Definition 2.5. [14] (Subdivision operation, S(G)). S(G) is obtained by splitting each edge
of G by introducing a new vertex.

For example, consider a complete bipartite graph K2,3.

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

Figure 5. (K2,3) and (S(K2,3))
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Table 6. Impact of subdivision operation on double domination number of a graph

Graph class γ2×(G) γ2×(S(G)) |V (G)| |V (S(G))|
Cn ⌈2n

3
⌉ ⌈4n

3
⌉ n 2n

Pn ⌈2(n+1)
3

⌉ ⌈4n
3
⌉ n 2n− 1

Wn ⌈n
3
⌉+ 1 2n n+ 1 3n+ 1

Km,n 4 2n+m m+ n m(n+ 1) + n

Kn 2 n+ ⌈n
2
⌉ n n+ 2n+n(n−1)

2

K1,n 1 + n 2n n+ 1 2n+ 1

Sr,t r + t 2(r+ t)− 2 r + t 3(r + t)− 2

Theorem 2.16. Let G = Cn be a cycle of order n. Then γ2×(S(G)) = ⌈4n
3
⌉.

Proof. Let G be a cycle with n vertices {v1, v2, . . . , vn} and n edges {e1, e2, . . . , en}. Split each
edge ei; 1 ≤ i ≤ n by a new vertex ui; 1 ≤ i ≤ n to get S(G). Then S(G) is again a cycle of
order 2n. Therefore, γ2×(S(G)) = ⌈2(2n)

3
⌉ = ⌈4n

3
⌉.

Theorem 2.17. Let G = Pn be a path of order n. Then γ2×(S(G)) = ⌈4n
3
⌉.

Proof. Let G = Pn be a path graph with n vertices {v1, v2, . . . , vn} and n − 1 edges
{e1, e2, . . . , en−1}. Split each edge ei; 1 ≤ i ≤ n − 1 by a new vertex ui; 1 ≤ i ≤ n − 1 to
get S(G). The graph S(G) is again a path with 2n− 1 vertices {v1, v2, . . . , vn, u1, u2, . . . , un−1}.
Thus, γ2×(S(G)) = ⌈2(2n−1+1)

3
⌉ = ⌈4n

3
⌉.

Theorem 2.18. Let G = Wn be a wheel graph of order n+ 1. Then, γ2×(S(G)) = 2n.

Proof. Let G be a wheel graph with n+1 vertices {v1, v2, . . . , vn+1} and 2n edges {e1, e2, . . . , e2n}.
Split each edge ei; 1 ≤ i ≤ 2n by a new vertex ui; 1 ≤ i ≤ 2n to get S(G). Consider the set
S = {v1, v2, . . . , vn, un+1, un+2, . . . , u2n}. This set dominates every vertex of S(G) at least twice.
Therefore, S is a double dominating set of S(G) where, |S| = 2n. Now to prove S is a minimum
double dominating set of S(G). Let |S| < 2n that is |S| = 2n − 1. Without loss of generality
let S = {v1, v2, . . . , vn, un+1, . . . , u2n−1}. This set dominates every vertex of S(G) but, vn is
dominated only once. Therefore, S is the minimum double dominating set of S(G). Hence,
γ2×(S(G)) = 2n.

Theorem 2.19. Let G = Km,n be a complete bipartite graph of order m + n where, m ≤ n.
Then, γ2×(S(G)) = 2n+m.

Proof. Let G be a complete bipartite graph with m + n vertices {v1, v2, . . . , vm, u1, u2, . . . , vn}
and mn edges {e1,1, e1,2, . . . , e1,n, e2,1, e2,2, . . . , e2,n, . . . , en,1, en,2, · · · , en,n}. Split each edge
ek,l; 1 ≤ k ≤ m; 1 ≤ l ≤ n by a new vertex wk,l; 1 ≤ k ≤ m; 1 ≤ l ≤ n. Consider S =

{vi, uj, wk,l|1 ≤ i ≤ m; 1 ≤ j ≤ n; 1 ≤ k ≤ m; 1 ≤ l ≤ n; k = l} ∪ {wk,k+1, wk,k+2, . . . , wk,l|
k = m; l = n}. This S dominates every vertices of S(G) at least twice. Therefore, S is a
double dominating set of S(G) where, |S| = 2n + m. Now to prove S is a minimum double
dominating set of S(G). Let |S| < 2n + m that is |S| = 2n + m − 1. Without loss of
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generality let S = {vi, uj, wk,l|1 ≤ i ≤ m; 1 ≤ j ≤ n; 1 ≤ k ≤ m; 1 ≤ l ≤ n; k = l}
∪ {wk,k+1, wk,k+2, . . . , wk,l|k = m; l = n} − {w1,1}. This set dominates every vertex of S(G) at
least twice but the vertices v1 and u1 are dominated only once. This implies S is the minimum
double dominating set of S(G). Hence, γ2×(S(G)) = 2n+m.

Theorem 2.20. Let G = Kn be a complete graph. Then, for n ≥ 4 γ2×(S(G)) = n+ ⌈n
2
⌉.

Proof. Let G be a complete graph with n vertices {v1, v2, . . . , vn} and n (n−1)
2

edges
{ei,j; 1 ≤ i, j ≤ n (n−1)

2
}. Split each edge {ei,j; 1 ≤ i, j ≤ n (n−1)

2
} by a new vertex

{ui,j; 1 ≤ i, j ≤ n (n−1)
2

} to get S(G). Then, S(K2) is a path of order 3 with γ2×(S(K2)) = 3.
Also, S(K3) is a cycle of order 6 with γ2×(S(K3)) = 4. For n ≥ 4, let S be the minimum
double dominating set of S(G) and let S = {vi; 1 ≤ i ≤ n}. This set dominates every
{ui,j; 1 ≤ i, j ≤ n (n−1)

2
} at least twice but {vi; 1 ≤ i ≤ n} are dominated only once. To

dominate them at least twice, include the vertices dividing the edges joining every distinct pair of
vertices of S(G). Therefore, |S| = n+ ⌈n

2
⌉. Hence, γ2×(S(G)) = n+ ⌈n

2
⌉.

Theorem 2.21. Let G = K1,n be a star graph. Then γ2×(S(G)) = 2n.

Proof. Let G be a star graph with n+1 vertices {v1, v2, . . . , , vn, u} and n edges {e1, e2, . . . , en}.
Split each edge ei; 1 ≤ i ≤ n by a new vertex v′i; 1 ≤ i ≤ n to get S(G). Here, all {vi|∀i =
1, 2, . . . , n} are pendant vertices and {v′i; ∀i = 1, 2, . . . , n} are their support vertices, respectively.
Therefore, a double dominating set S of S(G) must contain {vi, v′i|∀i = 1, 2, . . . , n}. This S is a
minimum double dominating set of S(G). Also, |S| = 2n. Thus γ2×(S(G)) = 2n.

Theorem 2.22. Let G = Sr,t be a double star graph with r + t vertices. Then γ2×S(G) =

2(r + t)− 2.

Proof. Let G be a double star graph with r + t vertices {u1, u2, . . . , ur, v1, v2, . . . , vt}. A double
star graph has exactly two non pendant vertices and let them be ur and vt. Let {ui; 1 ≤ i ≤ r−1}
be pendant vertices connected to ur and {vj; 1 ≤ j ≤ t− 1} be pendant vertices connected to vt.
Also, G has r + t − 1 edges {er,1, er,2, . . . , er,r−1, et,1, et,2, . . . , et,t−1} and er,t. Split each edge
{er,i; 1 ≤ i ≤ r − 1} and {et,j; 1 ≤ j ≤ t − 1} and er,t by a new vertex {wr,i; 1 ≤ i ≤ r − 1}
and {wt,j; 1 ≤ j ≤ t − 1} and wr,t to get S(G). Consider the set S = {ui, vj, wr,i, wt,j; 1 ≤ i ≤
r; 1 ≤ j ≤ t}. This set dominates every vertex of S(G) at least twice. Therefore, S is a double
dominating set of S(G) where, |S| = 2(r + t) − 2. Clearly, S is a minimum double dominating
set of S(G) because {ui; 1 ≤ i ≤ r − 1} and {vj; 1 ≤ j ≤ t − 1} are pendant vertices and
{wr,i, wt,j; 1 ≤ i ≤ r − 1; 1 ≤ j ≤ t− 1} are their support vertices and ur, vt are neighbors of a
vertex of degree 2. Therefore, a minimum double dominating set must contain all these vertices.
This implies, S is a minimum double dominating set of S(G). Hence, γ2×S(G) = 2(r+t)−2.

Conclusion and Future scope

In this paper, we identified the double domination number of graphs that are generated from
various graph classes by applying unary operations. Further, we investigated the impact of those
unary operations on double domination number. In near future, one can investigate the impact of
double domination number by applying other unary products.
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