Evaluation of certain families of log-cosine integrals using hypergeometric function approach and applications

Mohammad Idris Qureshi and Shakir Hussain Malik
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 3, Pages 499–515
DOI: 10.7546/nntdm.2024.30.3.499-515
Full paper (PDF, 288 Kb)

Details

Authors and affiliations

Mohammad Idris Qureshi
Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University)
New Delhi, 110025, India

Shakir Hussain Malik
Department of Mathematics, Government Degree College
Magam Budgam, Jammu and Kashmir, 193401, India

Abstract

In this paper, we provide the analytical solutions of the families of certain definite integrals: \int_0^\pi x^{m}\{\ln(2\cos\frac{x}{2})\}^{n}dx (m\in\mathbb{N}_{0} and n\in\mathbb{N}), in terms of multiple hypergeometric functions of Kampé de Fériet having the arguments \pm1 and Riemann zeta functions. As applications, we obtain some mixed summation formulas (19), (35) and (46) involving generalized hypergeometric functions _3F_2, _5F_4 and _7F_6 having the arguments \pm 1 and other (possibly) new summation formulas (38) and (40) for multiple hypergeometric functions of Kampé de Fériet having the arguments \pm 1 also mixed relations (36) and (47) involving Riemann zeta functions.

Keywords

  • Hypergeometric functions
  • Log-cosine integrals
  • Riemann zeta function
  • Kampé de Fériet multiple hypergeometric functions

2020 Mathematics Subject Classification

  • 33C05
  • 33C20
  • 11B65
  • 11M06
  • 33B20

References

  1. Baboo, M. S. (2017). Exact Solutions of Outstanding Problems and Novel Proofs Through Hypergeometric Approach. Ph.D. thesis under the supervision of Prof. Mohd. Idris Qureshi, Department of Applied Sciences and Humanities, Faculty of Engineering and Technology, Jamia Millia Islamia (A Central University), New Delhi-110025, India.
  2. Beumer, M. G. (1961). Some special integrals. The American Mathematical Monthly, 68, 645–647.
  3. Borwein, D., & Borwein, J. M. (1995). On an intriguing integral and some series related to ζ(4). Proceedings of the American Mathematical Society, 123(4), 1191–1198.
  4. Borwein, J. M., Bradley, D. M., Broadhurst, D. J., & Lisoněk, P. (2001). Special values of multiple polylogarithms. Transactions of the American Mathematical Society, 353, 907–941.
  5. Borwein, J. M., Broadhurst, D. J., & Kamnitzer, J. (2001). Central binomial sums, multiple Clausen values and zeta values. Experimental Mathematics, 10, 25–34.
  6. Choi, J., & Srivastava, H. M. (2011). Explicit evaluations of some families of log-sine and log-cosine integrals. Integral Transforms and Special Functions, 22(10), 767–783.
  7. Choi, J., Cho, Y. J., & Srivastava, H. M. (2009). Log-sine integrals involving series associated with the Zeta function and polylogarithms. Mathematica Scandinavica, 105, 199–217.
  8. Choi, J., Rathie, A. K., & Srivastava, H. M. (1999). Some hypergeometric and other evaluations of ζ(2) and allied series. Applied Mathematics and Computation, 104, 101–108.
  9. Cho, Y. J., Jung, M., Choi, J., & Srivastava, H. M. (2006). Closed-form evaluations of definite integrals and associated infinite series involving the Riemann Zeta function. International Journal of Computer Mathematics, 83, 461–472.
  10. Coffey, M. W. (2003). On some log-cosine integrals related to ζ(3), ζ(4) and ζ(6), Journal of Computational and Applied Mathematics, 159, 205–215.
  11. Hài, N. T., Marichev, O. I., & Srivastava, H. M. (1992). A note on the convergence of certain families of multiple hypergeometric series. Journal of Mathematical Analysis and Applications, 164 , 104–115.
  12. Karatsuba, A. A., & Voronin, S. M. (1992). The Riemann Zeta-Function. Walter de Gruyter, New York.
  13. Lee, T. Y., & Lin, W. (2014). An elementary evaluation of an intriguing integral Via Fourier series. Analysis Mathematica, 40, 63–67.
  14. Lewin, L. (1981). Polylogarithms and Associated Functions. North-Holland, New York/Amsterdam.
  15. Rainville, E. D. (1971). Special Functions. The Macmillan Co. Inc., New York 1960, Reprinted by Chelsea publ. Co., Bronx, New York.
  16. Srivastava, H. M., & Choi, J. (2012). Zeta and q-Zeta Functions and Associated Series and Integrals. Elsevier Science Publishers, Amsterdam/London/New York.
  17. Srivastava, H. M., & Daoust, M. C. (1969). Certain generalized Neumann expansions associated with the Kampé de Fériet’s function. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings. Series A. Mathematical Sciences, 72=Indag. Math., 31, 449–457.
  18. Srivastava, H. M., & Karlsson, P. W. (1985). Multiple Gaussian Hypergeometric Series. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley, New York/Chichester/Brisbane/Toronto.
  19. Srivastava, H. M., & Manocha, H. L. (1984). A Treatise on Generating Functions. Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York/Chichester/Brisbane/Toronto.
  20. Srivastava, H. M., & Panda, R. (1975). Some analytic or asymptotic confluent expansions for functions of several variables. Mathematics of Computation, 29(132), 1115–1128.
  21. Srivastava, H. M., & Panda, R. (1976). Some bilateral generating functions for a
    class of generalized hypergeometric polynomials. Journal für die Reine und Angewandte Mathematik, 283/284, 265–274.
  22. Titchmarsh, E. C. (1986). The Theory of the Riemann Zeta-Function (2nd Ed.). Oxford University Press, Oxford.
  23. Van der Poorten, A. J. (1980). Some wonderful formulas…An introduction to
    polylogarithms. Queen’s Papers in Pure and Applied Mathematics, 54, 269–286.

Manuscript history

  • Received: 30 May 2023
  • Revised: 3 June 2024
  • Accepted: 19 September 2024
  • Online First: 26 September 2024

Copyright information

Ⓒ 2024 by the Authors.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Qureshi, M. I., & Malik, S. H. (2024). Evaluation of certain families of log-cosine integrals using hypergeometric function approach and applications. Notes on Number Theory and Discrete Mathematics, 30(3), 499-515, DOI: 10.7546/nntdm.2024.30.3.499-515.

Comments are closed.