**Sunanta Srisopha and Teerapat Srichan**

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 30, 2024, Number 2, Pages 427–435

DOI: 10.7546/nntdm.2024.30.2.427-435

**Full paper (PDF, 246 Kb)**

## Details

### Authors and affiliations

Sunanta Srisopha

*Department of Mathematics, Faculty of Science,
Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province,
Pathumthani 13180, Thailand*

Teerapat Srichan

*Department of Mathematics, Faculty of Science,
Kasetsart University
Bangkok 10900, Thailand*

### Abstract

Let . For , a lattice point is powerful if and only if is a powerful number, where is the greatest common divisor function. In this paper, we count the number of the ordered pairs , such that the lattice point is powerful. Moreover, we study -free lattice points analogues of powerful lattice points.

### Keywords

- Greatest common divisor
- Piatetski-Shapiro sequence
- -free lattice points

### 2020 Mathematics Subject Classification

- 11N37
- 11N45

### References

- Akbal, Y. (2017). Friable values of Piatetski-Shapiro sequences.
*Proceedings of the American Mathematical Society*, 145(10), 4255–4268. - Baker, R., Banks, W., Brudern, J., Shparlinski, I., & Weingartner, A. (2013). Piatetski-Shapiro sequences.
*Acta Arithmetica*, 1(157), 37–68. - Cao, X., & Zhai, W. (1998). The distribution of square-free numbers of the form .
*Journal de th*, 10(2), 287–299.*é*orie des nombres de Bordeaux - Deshouillers, J. M. (2019). A remark on cube-free numbers in Segal–Piatestki-Shapiro sequences.
*Hardy–Ramanujan Journal*, 41, 127–132. - Dimitrov, S. I. (2022).
*Exponential sums over Piatetski-Shapiro primes in arithmetic progressions*. Preprint. arXiv:2211.10928. - Dimitrov, S. I. (2022). Primes of the form with square-free . Preprint. arXiv:2207.09808.
- Dimitrov, S. I. (2022). A Bombieri–Vinogradov type result for exponential sums over Piatetski-Shapiro primes.
*Lithuanian Mathematical Journal*, 62(4), 435–446. - Guo, V. Z., Li, J., & Zhang, M. (2023). Piatetski-Shapiro primes in arithmetic progressions.
*The Ramanujan Journal*, 60(3), 677–692. - Guo, V. Z., & Qi, J. (2022). A Generalization of Piatetski-Shapiro Sequences.
*Taiwanese Journal of Mathematics*, 26(1), 33–47. - Ivić. A, (1985).
*The Theory of the Riemann Zeta Function*. Wiley, New York. - Li, J., Zhang, M., & Xue, F. (2022). An additive problem over Piatetski-Shapiro primes and almost-primes.
*The Ramanujan Journal*, 57(4), 1307–1333. - Liu, K., Shparlinski, I. E., & Zhang, T. (2017). Squares in Piatetski-Shapiro sequences.
*Acta Arithmetica*, 181, 239–252. - Ma, S. (2022). On the distribution of
*k*-full lattice points in .*AIMS Mathematics*, 7(6), 10596–10608. - Pyatetskii-Shapiro, I. I. (1953). On the distribution of prime numbers in sequences of the form ⌊
*f*(*n*)⌋.*Matematicheskii Sbornik*, 75(3), 559–566. - Rieger, G. (1978). Remark on a paper of Stux concerning squarefree numbers in non-linear sequences.
*Pacific Journal of Mathematics*, 78(1), 241–242. - Srichan, T. (2021). On the distribution of (
*k*,*r*)-integers in Piatetski-Shapiro sequences.*Czechoslovak Mathematical Journal*, 71(4), 1063–1070. - Srichan, T., & Tangsupphathawat, P. (2020). Square-full numbers in Piatetski-Shapiro sequences.
*Annales math*, 44, 385–391.*é*matiques du*Québec* - Stux, I. (1975). Distribution of squarefree integers in non-linear sequences.
*Pacific Journal of Mathematics*, 59(2), 577–584. - Wang, H., & Zhang, Y. (2023). On the divisor function over Piatetski-Shapiro sequences.
*Czechoslovak Mathematical Journal*, 73(2), 613–620. - Zhang, M., & Li, J. (2017). Distribution of cube-free numbers with form .
*Frontiers of Mathematics in China*, 12(6), 1515–1525.

### Manuscript history

- Received: 11 April 2023
- Revised: 6 June 2024
- Accepted: 14 June 2024
- Online First: 20 June 2024

### Copyright information

Ⓒ 2024 by the Authors.

This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

## Related papers

## Cite this paper

Vasuki, K. R., & Nagendra, P. (2024). On the distribution of powerful and *r*-free lattice points. *Notes on Number Theory and Discrete Mathematics*, 30(2), 427-435, DOI: 10.7546/nntdm.2024.30.2.427-435.