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Abstract: Let 1 < c < 2. For m,n ∈ N, a lattice point (m,n) is powerful if and only if
gcd(m,n) is a powerful number, where gcd(∗, ∗) is the greatest common divisor function. In this
paper, we count the number of the ordered pairs (m,n), m,n ≤ x such that the lattice point
(⌊mc⌋ , ⌊nc⌋) is powerful. Moreover, we study r-free lattice points analogues of powerful lattice
points.
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1 Introduction and results

Let r be a fixed integer ≥ 2. We say that a positive integer n is powerful (or r-full) if for any
prime p | n we have that pr | n. Particularly, 2-full and 3-full numbers are called square-full
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and cube-full, respectively. Let G(r) denote the set of all powerful numbers and let fr(n) be the
characteristic function of G(r). For ℜ(s) > 1/r we have

Fr(s) =
∞∑
n=1

fr(n)n
−s =

∏
p

(
1 +

p−rs

1− p−s

)
(1)

(see [10, p. 33]). In 2022 Shunqi Ma [13] introduced the notion of r-full lattice points in Z2.
Namely, a non-zero lattice point (m,n) is r-full if and only if gcd(m,n) is an r-full number,
where gcd(∗, ∗) is the greatest common divisor function. In [13], he showed that, for x ≥ 2, we
have

Sr(x) = x2
∏
p

(
1− p−2 + p−2r

)
+O(x log2 x),

where Sr(x) denotes the number of r-full lattice points in the square area [1, x]× [1, x]. Moreover,
Shunqi Ma studied r-full lattice points in N2 from the viewpoint of random walks. For 0 < α < 1,
an α-random walk is defined by

Pi+1 = Pi +

(1, 0), with probability α,

(0, 1), with probability 1− α,

for i = 0, 1, 2, . . . , where Pi = (xi, yi) is the coordinate of the α-random walker at the i-th step
and P0 = (0, 0). For an α-random walk, define a sequence of random variables {Wi}i∈N by

Wi =

1, if Pi is r-full,

0, otherwise.

Shunqi Ma gave the density of r-full lattice points on a path of α-random walker. He showed
that, for any α ∈ (0, 1), we have

lim
n→∞

S̄r,α(n) =
∏
p

(
1− p−2 + p−2r

)
,

where

S̄r,α(n) =
1

n

n∑
i=1

Wi.

The Piatetski-Shapiro sequence of parameter c is defined by

Nc = {⌊nc⌋}n∈N (c > 1, c /∈ N),

where ⌊z⌋ is the integer part of z ∈ R. The Piatetski-Shapiro sequence was introduced by
Piatetski-Shapiro [14] to study prime numbers in a sequence of the form ⌊f(n)⌋, where f(n)

is a polynomial.

The study of the distribution of arithmetical functions on Piatetski-Shapiro is studied by many

authors; see, for example, [1–9, 11–13, 15–20] and the references contained therein. Drawing
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inspiration from this fact, we shall consider these problems on the two-dimensional lattice Nc×Nc

instead of Z2, where the sequence Nc := {⌊nc⌋}n∈N, (c > 1, c /∈ N, ). First, for 1 < c < 2, we

let

Sc
r(x) :=

∑
m,n≤x

gcd(⌊mc⌋,⌊nc⌋) is r-full

1.

We expect that,

lim
x→∞

Sc
r(x)

x2
= lim

x→∞

Sr(x)

x2
=

∏
p

(
1− p−2 + p−2r

)
.

We prove the following theorem.

Theorem 1.1. For x ≥ 1 , we have

Sc
r(x) = x2

∏
p

(
1− p−2 + p−2r

)
+

O
(
x(c+4)/3

)
, for 1 < c ≤ 5

4
,

O
(
xc+1/2

)
, for 5

4
< c < 3

2
.

Moreover, we shall study r-free lattice points analogues of r-full lattice points. A positive
integer n is called r-free whenever it is not divisible by the r-th power of any prime. As usual,
2-free and 3-free integers are called square-free and cube-free, respectively. Let qr(n) be the
characteristic function of the set of r-free numbers, and for ℜ(s) > 1

Qr(s) =
∞∑
n=1

qr(n)n
−s =

ζ(s)

ζ(rs)
, (2)

(see [10, p. 32]). A non-zero lattice point (m,n) is r-free if and only if gcd(m,n) is an r-free
number. We obtain the following theorem.

Theorem 1.2. For x ≥ 1, we have

∑
m,n ≤ x

gcd(⌊mc⌋,⌊nc⌋) is r-free

1 =
1

ζ(2r)
x2 +

O
(
x(c+4)/3

)
, for 1 < c ≤ 5

4
,

O
(
xc+1/2 log x

)
, for 5

4
< c < 3

2
.

Furthermore, we consider these problem over the different sequences. We prove the following
theorem, which are generalized results of Theorems 1.1 and 1.2.

Theorem 1.3. Let 1 < c1 ≤ c2 < 3/2. For x ≥ 1 , we have

∑
m,n ≤ x

gcd(⌊mc1⌋,⌊nc2⌋) is powerful

1 = x2
∏
p

(
1− p−2 + p−2r

)
+

O
(
x(c2+4)/3

)
, for 1 < c1 ≤ 5

4
,

O
(
x1/2+(2c1+c2)/3

)
, for 5

4
< c1 <

3
2
.

Theorem 1.4. Let 1 < c1 ≤ c2 < 3/2. For x ≥ 1 , we have

∑
m,n ≤ x

gcd(⌊mc1⌋,⌊nc2⌋) is r-free

1 =
1

ζ(2r)
x2 +

O
(
x(c2+4)/3

)
, for 1 < c1 ≤ 5

4
,

O
(
x1/2+(2c1+c2)/3 log x

)
, for 5

4
< c1 <

3
2
.
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2 Lemmas

The main ingredient in the following proof is a good estimation for the number of integer n up
to x such that ⌊nc⌋ belongs to an arithmetic progression. Deshouillers [4] proved the following
lemma.

Lemma 2.1. For 1 < c < 2, let x ∈ R and a, q ∈ Z such that 0 ≤ a < q ≤ xc,∑
n ≤ x

⌊nc⌋ ≡ a (mod q)

1 =
x

q
+O

(
min

(xc

q
,
x(c+1)/3

q1/3

))
.

To prove Theorems 1.1–1.4, we need the following lemmas.

Lemma 2.2. For 1 < c < 2, we have∑
m,n ≤ x

gcd(⌊mc⌋,⌊nc⌋) = d

1 =
1

d2ζ(2)
x2 +O

(x(c+4)/3

d4/3

)
+O

(xc+1/2

d

)
.

Proof. Let x > 1, we have

Ac(d;x) :=
∑

m,n≤x
gcd(⌊mc⌋,⌊nc⌋)=d

1.

We have

Ac(d;x) =
∑

m,n≤x
d|⌊mc⌋, d|⌊nc⌋

gcd(⌊mc⌋
d

,
⌊nc⌋
d

)=1

1 =
∑

m,n≤x
d|⌊mc⌋, d|⌊nc⌋

∑
r|gcd(⌊mc⌋

d
,
⌊nc⌋
d

)

µ(r)

=
∑

m,n≤x
d|⌊mc⌋, d|⌊nc⌋

∑
r|⌊mc⌋

d

r| ⌊n
c⌋
d

µ(r)

=
∑
r≤xc

d

µ(r)
∑

m,n≤x
⌊mc⌋≡0 (mod rd)
⌊nc⌋≡0 (mod rd)

1

In view of Lemma 2.1, we have

Ac(d;x) =
∑
r≤xc

d

µ(r)
( x

rd
+O

(
min

{x(c+1)/3

(rd)1/3
,
xc

rd

}))2

=
∑

r≤xc−1/2d−1

µ(r)
( x

rd
+O

(x(c+1)/3

(rd)1/3

))2

+
∑

xc−1/2d−1<r≤xc

d

µ(r)
( x

rd
+O

(xc

rd

))2

=
∑

r≤xc−1/2d−1

µ(r)
( x2

r2d2
+O

(x(c+4)/3

(rd)4/3

)
+O

(x(2c+2)/3

(rd)2/3

))
+

∑
xc−1/2d−1<r≤xc

d

µ(r)
( x2

r2d2
+O

(xc+1

r2d2

)
+O

( x2c

r2d2

))
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=
x2

d2

∑
r≤xcd−1

µ(r)

r2
+O

(x(c+4)/3

d4/3

∑
r≤xc−1/2d−1

1

r4/3

)
+O

(x(2c+2)/3

d2/3

∑
r≤xc−1/2d−1

1

r2/3

)
+O

(xc+1

d2

∑
xc−1/2d−1<r≤xc

d

1

r2

)
+O

(x2c

d2

∑
xc−1/2d−1<r≤xc

d

1

r2

)

=
x2

d2ζ(2)
+O

(x(c+4)/3

d4/3

)
+O

(xc+1/2

d

)
.

This proves Lemma 2.2.

Next Lemma is a generalized result of Lemma 2.2.

Lemma 2.3. For 1 < c1 ≤ c2 < 2, we have∑
m,n≤x

gcd(⌊mc1⌋,⌊nc2⌋)=d

1 =
1

d2ζ(2)
x2 +O

(x(c2+4)/3

d4/3

)
+O

(x1/2+(2c1+c2)/3

d

)
.

Proof. Let x > 1, we have

Ac1,c2(d;x) :=
∑

m,n≤x
gcd(⌊mc1⌋,⌊nc2⌋)=d

1.

We have

Ac1,c2(d;x) =
∑

m,n≤x
d|⌊mc1⌋, d|⌊nc2⌋

gcd(⌊mc1⌋
d

,
⌊nc2⌋

d
)=1

1 =
∑

m,n≤x
d|⌊mc1⌋, d|⌊nc2⌋

∑
r|gcd(⌊mc1⌋

d
,
⌊nc2⌋

d
)

µ(r)

=
∑

m,n≤x
d|⌊mc1⌋, d|⌊nc2⌋

∑
r|⌊mc1⌋

d

r| ⌊n
c2⌋
d

µ(r)

=
∑
r≤xc1

d

µ(r)
∑

m,n≤x
⌊mc1⌋≡0 (mod rd)
⌊nc2⌋≡0 (mod rd)

1.

In view of Lemma 2.1, we have

Ac1,c2(d;x) =
∑

r≤xc1d−1

µ(r)
( x

rd
+O

(
min

{x(c1+1)/3

(rd)1/3
,
xc1

rd

}))( x

rd
+O

(
min

{x(c2+1)/3

(rd)1/3
,
xc2

rd

}))
.

Since 1 < c1 < c2 <
3
2
, the case c2 − 1

2
> c1 does not holds. Then we write

Ac1,c2(d;x) =
∑

r≤xc1−1/2d−1

µ(r)
( x

rd
+O

(x(c1+1)/3

(rd)1/3

))( x

rd
+O

(x(c2+1)/3

(rd)1/3

))
+

∑
xc1−1/2d−1<r≤xc2−1/2d−1

µ(r)
( x

rd
+O

(xc1

rd

))( x

rd
+O

(x(c2+1)/3

(rd)1/3

))
+

∑
xc2−1/2d−1<r≤xc1d−1

µ(r)
( x

rd
+O

(xc1

rd

))( x

rd
+O

(xc2

rd

))
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=
x2

d2

∑
r≤xc1d−1

µ(r)

r2
+O

(x(c2+4)/3

d4/3

∑
r≤xc1−1/2d−1

1

r4/3

)
+O

(x(c1+c2+2)/3

d2/3

∑
r≤xc1−1/2d−1

1

r2/3

)
+O

(xc1+1

d2

∑
xc1−1/2d−1<r≤xc2−1/2d−1

1

r2

)
+O

(x(3c1+c2+1)/3

d4/3

∑
xc1−1/2d−1<r≤xc2−1/2d−1

1

r4/3

)
+O

(xc1+c2

d2

∑
xc2−1/2d−1<r≤xc1d−1

1

r2

)
=

x2

d2ζ(2)
+O

(x(c2+4)/3

d4/3

)
+O

(x(4c1+2c2+3)/6

d

)
.

This proves Lemma 2.3.

3 Proofs

Proof of Theorem 1.1. Let x > 1, we have

Sc
r(x) =

∑
m,n≤x

gcd(⌊mc⌋,⌊nc⌋) is r-full

1.

It follows that

Sc
r(x) =

∑
d ≤ xc

fr(d)Ac(d;x).

Thus,

Sc
r(x) =

∑
d ≤ xc

fr(d)
( x2

d2ζ(2)
+O

(x(c+4)/3

d4/3

)
+O

(xc+1/2

d

))
=

x2

ζ(2)

∑
d ≤ xc

fr(d)

d2
+O

(
x(c+4)/3

∑
d ≤ xc

fr(d)

d4/3

)
+O

(
xc+1/2

∑
d ≤ xc

fr(d)

d

)
. (3)

From the series (1) is absolutely convergent for ℜ(s) > 1/r, then the second and the last sums in
(3) are O(1). Moreover,

∑
d ≤ xc

fr(d)

d2
=

∞∑
d=1

fr(d)

d2
−

∑
d>xc

fr(d)

d2

=
∏
p

(
1 +

p−rs

1− p−s

)
+O(xc/r−c).

Since c/r − c+ 2 < (c+ 4)/3, we have

Sc
r(x) =

x2

ζ(2)

∏
p

(
1 +

p−rs

1− p−s

)
+O(xc/r−c+2) +O

(
x(c+4)/3

)
+O

(
xc+1/2

)
=

x2

ζ(2)

∏
p

(
1 +

p−rs

1− p−s

)
+O

(
x(c+4)/3

)
+O

(
xc+1/2

)
.
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By the Euler product of ζ(2), we have∏
p

(
1− p−2 + p−2r

)
ζ(2) =

∏
p

(
1− p−2 + p−2r

)(
1− p−2

)−1

=
∏
p

(
1 +

p−2r

1− p−2

)
.

This proves Theorem 1.1.

Proof of Theorem 1.2. We write ∑
m,n≤x

gcd(⌊mc⌋,⌊nc⌋) is r-free

1 =
∑

d ≤ xc

qr(d)Ac(d;x).

Thus, ∑
m,n≤x

gcd(⌊mc⌋,⌊nc⌋) is r-free

1 =
∑

d ≤ xc

qr(d)
( x2

d2ζ(2)
+O

(x(c+4)/3

d4/3

)
+O

(xc+1/2

d

))

=
x2

ζ(2)

∑
d ≤ xc

qr(d)

d2
+O

(
x(c+4)/3

∑
d ≤ xc

qr(d)

d4/3

)
+O

(
xc+1/2

∑
d ≤ xc

qr(d)

d

)
.

In view of (2), we have

∑
d ≤ xc

qr(d)

d2
=

∞∑
d=1

qr(d)

d2
−

∑
d>xc

qr(d)

d2
=

ζ(2)

ζ(2r)
+O(x−c),

∑
d ≤ xc

qr(d)

d4/3
= O(1), and

∑
d ≤ xc

qr(d)

d
= O(log x).

Thus, ∑
m,n≤x

gcd(⌊mc⌋,⌊nc⌋) is r-free

1 =
1

ζ(2r)
x2 +O

(
x(c+4)/3

)
+O

(
xc+1/2 log x

)
.

This proves Theorem 1.2.

Proof of Theorems 1.3 and 1.4. We prove Theorems 1.3 and 1.4 by using Lemma 2.3 and a similar
proof as in the proof of Theorem 1.1 and 1.2.
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Journal de théorie des nombres de Bordeaux, 10(2), 287–299.

[4] Deshouillers, J. M. (2019). A remark on cube-free numbers in Segal–Piatestki-Shapiro
sequences. Hardy–Ramanujan Journal, 41, 127–132.

[5] Dimitrov, S. I. (2022). Exponential sums over Piatetski-Shapiro primes in arithmetic
progressions. Preprint. arXiv:2211.10928.

[6] Dimitrov, S. I. (2022). Primes of the form ⌊nc⌋ with square-free n. Preprint.
arXiv:2207.09808.

[7] Dimitrov, S. I. (2022). A Bombieri–Vinogradov type result for exponential sums over
Piatetski-Shapiro primes. Lithuanian Mathematical Journal, 62(4), 435–446.

[8] Guo, V. Z., Li, J., & Zhang, M. (2023). Piatetski-Shapiro primes in arithmetic progressions.
The Ramanujan Journal, 60(3), 677–692.

[9] Guo, V. Z., & Qi, J. (2022). A Generalization of Piatetski-Shapiro Sequences. Taiwanese
Journal of Mathematics, 26(1), 33–47.
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