On the distribution of powerful and r-free lattice points

Sunanta Srisopha ${ }^{1}$ and Teerapat Srichan ${ }^{2, *}$

${ }^{1}$ Department of Mathematics, Faculty of Science, Valaya Alongkorn Rajabhat University under the Royal Patronage Pathum Thani Province, Pathumthani 13180, Thailand e-mail: sunanta.sri@vru.ac.th
${ }^{2}$ Department of Mathematics, Faculty of Science, Kasetsart University Bangkok 10900, Thailand e-mail: fscitrp@ku.ac.th

* Corresponding author

Received: 11 April 2023
Revised: 6 June 2024
Accepted: 14 June 2024
Online First: 20 June 2024

Abstract

Let $1<c<2$. For $m, n \in \mathbb{N}$, a lattice point (m, n) is powerful if and only if $\operatorname{gcd}(m, n)$ is a powerful number, where $\operatorname{gcd}(*, *)$ is the greatest common divisor function. In this paper, we count the number of the ordered pairs $(m, n), \quad m, n \leq x$ such that the lattice point $\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor\right)$ is powerful. Moreover, we study r-free lattice points analogues of powerful lattice points.

Keywords: Greatest common divisor, Piatetski-Shapiro sequence, r-free lattice points.
2020 Mathematics Subject Classification: 11N37, 11N45.

1 Introduction and results

Let r be a fixed integer ≥ 2. We say that a positive integer n is powerful (or r-full) if for any prime $p \mid n$ we have that $p^{r} \mid n$. Particularly, 2-full and 3-full numbers are called square-full

	Copyright © 2024 by the Authors. This is an Open Access paper distributed under the (c) (i) terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

and cube-full, respectively. Let $G(r)$ denote the set of all powerful numbers and let $f_{r}(n)$ be the characteristic function of $G(r)$. For $\Re(s)>1 / r$ we have

$$
\begin{equation*}
F_{r}(s)=\sum_{n=1}^{\infty} f_{r}(n) n^{-s}=\prod_{p}\left(1+\frac{p^{-r s}}{1-p^{-s}}\right) \tag{1}
\end{equation*}
$$

(see [10, p. 33]). In 2022 Shunqi Ma [13] introduced the notion of r-full lattice points in \mathbb{Z}^{2}. Namely, a non-zero lattice point (m, n) is r-full if and only if $\operatorname{gcd}(m, n)$ is an r-full number, where $\operatorname{gcd}(*, *)$ is the greatest common divisor function. In [13], he showed that, for $x \geq 2$, we have

$$
S_{r}(x)=x^{2} \prod_{p}\left(1-p^{-2}+p^{-2 r}\right)+O\left(x \log ^{2} x\right)
$$

where $S_{r}(x)$ denotes the number of r-full lattice points in the square area $[1, x] \times[1, x]$. Moreover, Shunqi Ma studied r-full lattice points in \mathbb{N}^{2} from the viewpoint of random walks. For $0<\alpha<1$, an α-random walk is defined by

$$
P_{i+1}=P_{i}+ \begin{cases}(1,0), & \text { with probability } \alpha \\ (0,1), & \text { with probability } 1-\alpha\end{cases}
$$

for $i=0,1,2, \ldots$, where $P_{i}=\left(x_{i}, y_{i}\right)$ is the coordinate of the α-random walker at the i-th step and $P_{0}=(0,0)$. For an α-random walk, define a sequence of random variables $\left\{W_{i}\right\}_{i \in \mathbb{N}}$ by

$$
W_{i}= \begin{cases}1, & \text { if } P_{i} \text { is } r \text {-full, } \\ 0, & \text { otherwise }\end{cases}
$$

Shunqi Ma gave the density of r-full lattice points on a path of α-random walker. He showed that, for any $\alpha \in(0,1)$, we have

$$
\lim _{n \rightarrow \infty} \bar{S}_{r, \alpha}(n)=\prod_{p}\left(1-p^{-2}+p^{-2 r}\right)
$$

where

$$
\bar{S}_{r, \alpha}(n)=\frac{1}{n} \sum_{i=1}^{n} W_{i} .
$$

The Piatetski-Shapiro sequence of parameter c is defined by

$$
\mathbb{N}^{c}=\left\{\left\lfloor n^{c}\right\rfloor\right\}_{n \in \mathbb{N}} \quad(c>1, c \notin \mathbb{N})
$$

where $\lfloor z\rfloor$ is the integer part of $z \in \mathbb{R}$. The Piatetski-Shapiro sequence was introduced by Piatetski-Shapiro [14] to study prime numbers in a sequence of the form $\lfloor f(n)\rfloor$, where $f(n)$ is a polynomial.

The study of the distribution of arithmetical functions on Piatetski-Shapiro is studied by many authors; see, for example, $[1-9,11-13,15-20]$ and the references contained therein. Drawing
inspiration from this fact, we shall consider these problems on the two-dimensional lattice $\mathbb{N}^{c} \times \mathbb{N}^{c}$ instead of \mathbb{Z}^{2}, where the sequence $\mathbb{N}^{c}:=\left\{\left\lfloor n^{c}\right\rfloor\right\}_{n \in \mathbb{N}},(c>1, c \notin \mathbb{N}$, $)$. First, for $1<c<2$, we let

$$
S_{r}^{c}(x):=\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,[n c\rfloor\right) \text { is } r \text {-full }}} 1
$$

We expect that,

$$
\lim _{x \rightarrow \infty} \frac{S_{r}^{c}(x)}{x^{2}}=\lim _{x \rightarrow \infty} \frac{S_{r}(x)}{x^{2}}=\prod_{p}\left(1-p^{-2}+p^{-2 r}\right)
$$

We prove the following theorem.
Theorem 1.1. For $x \geq 1$, we have

$$
S_{r}^{c}(x)=x^{2} \prod_{p}\left(1-p^{-2}+p^{-2 r}\right)+ \begin{cases}O\left(x^{(c+4) / 3}\right), & \text { for } 1<c \leq \frac{5}{4} \\ O\left(x^{c+1 / 2}\right), & \text { for } \frac{5}{4}<c<\frac{3}{2}\end{cases}
$$

Moreover, we shall study r-free lattice points analogues of r-full lattice points. A positive integer n is called r-free whenever it is not divisible by the r-th power of any prime. As usual, 2 -free and 3 -free integers are called square-free and cube-free, respectively. Let $q_{r}(n)$ be the characteristic function of the set of r-free numbers, and for $\Re(s)>1$

$$
\begin{equation*}
Q_{r}(s)=\sum_{n=1}^{\infty} q_{r}(n) n^{-s}=\frac{\zeta(s)}{\zeta(r s)}, \tag{2}
\end{equation*}
$$

(see [10, p. 32]). A non-zero lattice point (m, n) is r-free if and only if $\operatorname{gcd}(m, n)$ is an r-free number. We obtain the following theorem.

Theorem 1.2. For $x \geq 1$, we have

$$
\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor\right)}} 1=\frac{1}{\zeta(2 r)} x^{2}+ \begin{cases}O\left(x^{(c+4) / \text { free }}\right), & \text { for } 1<c \leq \frac{5}{4} \\ O\left(x^{c+1 / 2} \log x\right), & \text { for } \frac{5}{4}<c<\frac{3}{2}\end{cases}
$$

Furthermore, we consider these problem over the different sequences. We prove the following theorem, which are generalized results of Theorems 1.1 and 1.2.

Theorem 1.3. Let $1<c_{1} \leq c_{2}<3 / 2$. For $x \geq 1$, we have

$$
\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c_{1}}\right\rfloor,\left\lfloor n^{2}\right\rfloor\right) \\ \text { is powerful }}} 1=x^{2} \prod_{p}\left(1-p^{-2}+p^{-2 r}\right)+ \begin{cases}O\left(x^{\left(c_{2}+4\right) / 3}\right), & \text { for } 1<c_{1} \leq \frac{5}{4}, \\ O\left(x^{1 / 2+\left(2 c_{1}+c_{2}\right) / 3}\right), & \text { for } \frac{5}{4}<c_{1}<\frac{3}{2} .\end{cases}
$$

Theorem 1.4. Let $1<c_{1} \leq c_{2}<3 / 2$. For $x \geq 1$, we have

$$
\sum_{\substack{m, n \leq \\ \operatorname{gcd}\left(\left\lfloor m^{c_{1}}\right\rfloor,\left\lfloor n^{c_{2}}\right\rfloor\right)}} 1=\frac{1}{\zeta((2 r)} x^{2}+ \begin{cases}O\left(x^{\left(c_{2}+4\right) / 3}\right), & \text { for } 1<c_{1} \leq \frac{5}{4} \\ O\left(x^{1 / 2+\left(2 c_{1}+c_{2}\right) / 3} \log x\right), & \text { for } \frac{5}{4}<c_{1}<\frac{3}{2}\end{cases}
$$

2 Lemmas

The main ingredient in the following proof is a good estimation for the number of integer n up to x such that $\left\lfloor n^{c}\right\rfloor$ belongs to an arithmetic progression. Deshouillers [4] proved the following lemma.

Lemma 2.1. For $1<c<2$, let $x \in \mathbb{R}$ and $a, q \in \mathbb{Z}$ such that $0 \leq a<q \leq x^{c}$,

$$
\sum_{\substack{n \leq x \\\left\lfloor n^{c}\right\rfloor \equiv a(\bmod q)}} 1=\frac{x}{q}+O\left(\min \left(\frac{x^{c}}{q}, \frac{x^{(c+1) / 3}}{q^{1 / 3}}\right)\right) .
$$

To prove Theorems 1.1-1.4, we need the following lemmas.
Lemma 2.2. For $1<c<2$, we have

$$
\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor\right)=d}} 1=\frac{1}{d^{2} \zeta(2)} x^{2}+O\left(\frac{x^{(c+4) / 3}}{d^{4 / 3}}\right)+O\left(\frac{x^{c+1 / 2}}{d}\right) .
$$

Proof. Let $x>1$, we have

$$
A_{c}(d ; x):=\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor\right)=d}} 1 .
$$

We have

$$
\begin{aligned}
& =\sum_{\substack{m, n \leq x \\
d \backslash\left[m^{c}\right\rfloor, d\left\lfloor n^{c}\right\rfloor}} \sum_{\substack{r \backslash \frac{\left.m^{c}\right\rfloor}{}\left|\frac{\left\lfloor n^{c}\right\rfloor}{c} \\
r\right| \frac{1}{d}}} \mu(r)
\end{aligned}
$$

In view of Lemma 2.1, we have

$$
\begin{aligned}
A_{c}(d ; x)= & \sum_{r \leq \frac{x^{c}}{d}} \mu(r)\left(\frac{x}{r d}+O\left(\min \left\{\frac{x^{(c+1) / 3}}{(r d)^{1 / 3}}, \frac{x^{c}}{r d}\right\}\right)\right)^{2} \\
= & \sum_{r \leq x^{c-1 / 2} d^{-1}} \mu(r)\left(\frac{x}{r d}+O\left(\frac{x^{(c+1) / 3}}{(r d)^{1 / 3}}\right)\right)^{2}+\sum_{x^{c-1 / 2} d^{-1}<r \leq \frac{x^{c}}{d}} \mu(r)\left(\frac{x}{r d}+O\left(\frac{x^{c}}{r d}\right)\right)^{2} \\
= & \sum_{r \leq x^{c-1 / 2} d^{-1}} \mu(r)\left(\frac{x^{2}}{r^{2} d^{2}}+O\left(\frac{x^{(c+4) / 3}}{(r d)^{4 / 3}}\right)+O\left(\frac{x^{(2 c+2) / 3}}{(r d)^{2 / 3}}\right)\right) \\
& +\sum_{x^{c-1 / 2} d^{-1}<r \leq \frac{x^{c}}{d}} \mu(r)\left(\frac{x^{2}}{r^{2} d^{2}}+O\left(\frac{x^{c+1}}{r^{2} d^{2}}\right)+O\left(\frac{x^{2 c}}{r^{2} d^{2}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{x^{2}}{d^{2}} \sum_{r \leq x^{c} d} \frac{\mu(r)}{r^{2}}+O\left(\frac{x^{(c+4) / 3}}{d^{4 / 3}} \sum_{r \leq x^{c-1 / 2} d^{-1}} \frac{1}{r^{4 / 3}}\right)+O\left(\frac{x^{(2 c+2) / 3}}{d^{2 / 3}} \sum_{r \leq x^{c-1 / 2} d^{-1}} \frac{1}{r^{2 / 3}}\right) \\
& +O\left(\frac{x^{c+1}}{d^{2}} \sum_{x^{c-1 / 2} d^{-1}<r \leq \frac{x^{c}}{d}} \frac{1}{r^{2}}\right)+O\left(\frac{x^{2 c}}{d^{2}} \sum_{x^{c-1 / 2} d^{-1}<r \leq \frac{x^{c}}{d}} \frac{1}{r^{2}}\right) \\
= & \frac{x^{2}}{d^{2} \zeta(2)}+O\left(\frac{x^{(c+4) / 3}}{d^{4 / 3}}\right)+O\left(\frac{x^{c+1 / 2}}{d}\right) .
\end{aligned}
$$

This proves Lemma 2.2.
Next Lemma is a generalized result of Lemma 2.2.
Lemma 2.3. For $1<c_{1} \leq c_{2}<2$, we have

$$
\sum_{\substack{m, n \leq x \\\left(\left\lfloor m^{c}\right\rfloor \backslash\left\lfloor n^{2}\right\rfloor\right)=d}} 1=\frac{1}{d^{2} \zeta(2)} x^{2}+O\left(\frac{x^{\left(c_{2}+4\right) / 3}}{d^{4 / 3}}\right)+O\left(\frac{x^{1 / 2+\left(2 c_{1}+c_{2}\right) / 3}}{d}\right) .
$$

Proof. Let $x>1$, we have

$$
A_{c_{1}, c_{2}}(d ; x):=\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c_{2}}\right\rfloor\right)=d}} 1 .
$$

We have

$$
\begin{aligned}
& =\sum_{\substack{m, n \leq x \\
d\left\lfloor\left\lfloor m^{c 1}\right\rfloor, d \backslash n^{c_{2}}\right\rfloor}} \sum_{\substack{r\left\lfloor\frac{\left.m^{c_{1}}\right\rfloor}{} \\
r \left\lvert\, \frac{\left\lfloor n^{2} c^{2}\right\rfloor}{d}\right.\right.}} \mu(r)
\end{aligned}
$$

In view of Lemma 2.1, we have

$$
A_{c_{1}, c_{2}}(d ; x)=\sum_{r \leq x^{c_{1}} d^{-1}} \mu(r)\left(\frac{x}{r d}+O\left(\min \left\{\frac{x^{\left(c_{1}+1\right) / 3}}{(r d)^{1 / 3}}, \frac{x^{c_{1}}}{r d}\right\}\right)\right)\left(\frac{x}{r d}+O\left(\min \left\{\frac{x^{\left(c_{2}+1\right) / 3}}{(r d)^{1 / 3}}, \frac{x^{c_{2}}}{r d}\right\}\right)\right)
$$

Since $1<c_{1}<c_{2}<\frac{3}{2}$, the case $c_{2}-\frac{1}{2}>c_{1}$ does not holds. Then we write

$$
\begin{aligned}
A_{c_{1}, c_{2}}(d ; x)= & \sum_{r \leq x^{c_{1}-1 / 2} d^{-1}} \mu(r)\left(\frac{x}{r d}+O\left(\frac{x^{\left(c_{1}+1\right) / 3}}{(r d)^{1 / 3}}\right)\right)\left(\frac{x}{r d}+O\left(\frac{x^{\left(c_{2}+1\right) / 3}}{(r d)^{1 / 3}}\right)\right) \\
& +\sum_{x^{c_{1}-1 / 2} d^{-1}<r \leq x^{c_{2}-1 / 2} d^{-1}} \mu(r)\left(\frac{x}{r d}+O\left(\frac{x^{c_{1}}}{r d}\right)\right)\left(\frac{x}{r d}+O\left(\frac{x^{\left(c_{2}+1\right) / 3}}{(r d)^{1 / 3}}\right)\right) \\
& +\sum_{x^{c_{2}-1 / 2} d^{-1}<r \leq x^{c_{1}} d^{-1}} \mu(r)\left(\frac{x}{r d}+O\left(\frac{x^{c_{1}}}{r d}\right)\right)\left(\frac{x}{r d}+O\left(\frac{x^{c_{2}}}{r d}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{x^{2}}{d^{2}} \sum_{r \leq x^{c_{1}} d^{-1}} \frac{\mu(r)}{r^{2}}+O\left(\frac{x^{\left(c_{2}+4\right) / 3}}{d^{4 / 3}} \sum_{r \leq x^{c_{1}-1 / 2} d^{-1}} \frac{1}{r^{4 / 3}}\right)+O\left(\frac{x^{\left(c_{1}+c_{2}+2\right) / 3}}{d^{2 / 3}} \sum_{r \leq x^{c_{1}-1 / 2} d^{-1}} \frac{1}{r^{2 / 3}}\right) \\
& +O\left(\frac{x^{c_{1}+1}}{d^{2}} \sum_{x^{c_{1}-1 / 2} d^{-1}<r \leq x^{c_{2}-1 / 2} d^{-1}} \frac{1}{r^{2}}\right)+O\left(\frac{x^{\left(3 c_{1}+c_{2}+1\right) / 3}}{d^{4 / 3}} \sum_{x^{c_{1}-1 / 2} d^{-1}<r \leq x^{c_{2}-1 / 2} d^{-1}}\right. \\
& +O\left(\frac{x^{c_{1}+c_{2}}}{d^{2}} \sum_{x^{c_{2}-1 / 2}} \sum_{d^{-1}<r \leq x^{c_{1}} d^{-1}} \frac{1}{r^{2}}\right) \\
= & \frac{x^{2}}{d^{2} \zeta(2)}+O\left(\frac{x^{\left(c_{2}+4\right) / 3}}{d^{4 / 3}}\right)+O\left(\frac{x^{\left(4 c_{1}+2 c_{2}+3\right) / 6}}{d}\right) .
\end{aligned}
$$

This proves Lemma 2.3.

3 Proofs

Proof of Theorem 1.1. Let $x>1$, we have

$$
S_{r}^{c}(x)=\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor\right) \text { is } r \text {-full }}} 1 .
$$

It follows that

$$
S_{r}^{c}(x)=\sum_{d \leq x^{c}} f_{r}(d) A_{c}(d ; x) .
$$

Thus,

$$
\begin{align*}
S_{r}^{c}(x) & =\sum_{d \leq x^{c}} f_{r}(d)\left(\frac{x^{2}}{d^{2} \zeta(2)}+O\left(\frac{x^{(c+4) / 3}}{d^{4 / 3}}\right)+O\left(\frac{x^{c+1 / 2}}{d}\right)\right) \\
& =\frac{x^{2}}{\zeta(2)} \sum_{d \leq x^{c}} \frac{f_{r}(d)}{d^{2}}+O\left(x^{(c+4) / 3} \sum_{d \leq x^{c}} \frac{f_{r}(d)}{d^{4 / 3}}\right)+O\left(x^{c+1 / 2} \sum_{d \leq x^{c}} \frac{f_{r}(d)}{d}\right) . \tag{3}
\end{align*}
$$

From the series (1) is absolutely convergent for $\Re(s)>1 / r$, then the second and the last sums in (3) are $O(1)$. Moreover,

$$
\begin{aligned}
\sum_{d \leq x^{c}} \frac{f_{r}(d)}{d^{2}} & =\sum_{d=1}^{\infty} \frac{f_{r}(d)}{d^{2}}-\sum_{d>x^{c}} \frac{f_{r}(d)}{d^{2}} \\
& =\prod_{p}\left(1+\frac{p^{-r s}}{1-p^{-s}}\right)+O\left(x^{c / r-c}\right) .
\end{aligned}
$$

Since $c / r-c+2<(c+4) / 3$, we have

$$
\begin{aligned}
S_{r}^{c}(x) & =\frac{x^{2}}{\zeta(2)} \prod_{p}\left(1+\frac{p^{-r s}}{1-p^{-s}}\right)+O\left(x^{c / r-c+2}\right)+O\left(x^{(c+4) / 3}\right)+O\left(x^{c+1 / 2}\right) \\
& =\frac{x^{2}}{\zeta(2)} \prod_{p}\left(1+\frac{p^{-r s}}{1-p^{-s}}\right)+O\left(x^{(c+4) / 3}\right)+O\left(x^{c+1 / 2}\right) .
\end{aligned}
$$

By the Euler product of $\zeta(2)$, we have

$$
\prod_{p}\left(1-p^{-2}+p^{-2 r}\right) \zeta(2)=\prod_{p}\left(1-p^{-2}+p^{-2 r}\right)\left(1-p^{-2}\right)^{-1}=\prod_{p}\left(1+\frac{p^{-2 r}}{1-p^{-2}}\right) .
$$

This proves Theorem 1.1.

Proof of Theorem 1.2. We write

$$
\sum_{\substack{m, n \leq x \\ m^{c}\left|,\left|n^{c}\right|\right) \text { is } r \text {-free }}} 1=\sum_{d \leq x^{c}} q_{r}(d) A_{c}(d ; x)
$$

Thus,

$$
\begin{aligned}
\sum_{\substack{m, n \leq x \\
\operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor\right) \text { is } r \text {-free }}} 1 & =\sum_{d \leq x^{c}} q_{r}(d)\left(\frac{x^{2}}{d^{2} \zeta(2)}+O\left(\frac{x^{(c+4) / 3}}{d^{4 / 3}}\right)+O\left(\frac{x^{c+1 / 2}}{d}\right)\right) \\
& =\frac{x^{2}}{\zeta(2)} \sum_{d \leq x^{c}} \frac{q_{r}(d)}{d^{2}}+O\left(x^{(c+4) / 3} \sum_{d \leq x^{c}} \frac{q_{r}(d)}{d^{4 / 3}}\right)+O\left(x^{c+1 / 2} \sum_{d \leq x^{c}} \frac{q_{r}(d)}{d}\right) .
\end{aligned}
$$

In view of (2), we have

$$
\begin{gathered}
\sum_{d \leq x^{c}} \frac{q_{r}(d)}{d^{2}}=\sum_{d=1}^{\infty} \frac{q_{r}(d)}{d^{2}}-\sum_{d>x^{c}} \frac{q_{r}(d)}{d^{2}}=\frac{\zeta(2)}{\zeta(2 r)}+O\left(x^{-c}\right), \\
\sum_{d \leq x^{c}} \frac{q_{r}(d)}{d^{4 / 3}}=O(1), \text { and } \sum_{d \leq x^{c}} \frac{q_{r}(d)}{d}=O(\log x) .
\end{gathered}
$$

Thus,

$$
\sum_{\substack{m, n \leq x \\ \operatorname{gcd}\left(\left\lfloor m^{c}\right\rfloor,\left\lfloor n^{c}\right\rfloor\right) \text { is } r \text {-free }}} 1=\frac{1}{\zeta(2 r)} x^{2}+O\left(x^{(c+4) / 3}\right)+O\left(x^{c+1 / 2} \log x\right) .
$$

This proves Theorem 1.2.

Proof of Theorems 1.3 and 1.4. We prove Theorems 1.3 and 1.4 by using Lemma 2.3 and a similar proof as in the proof of Theorem 1.1 and 1.2.

Acknowledgements

This work was financially supported by Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation, Grant No. RGNS 63-40.

References

[1] Akbal, Y. (2017). Friable values of Piatetski-Shapiro sequences. Proceedings of the American Mathematical Society, 145(10), 4255-4268.
[2] Baker, R., Banks, W., Brüdern, J., Shparlinski, I., \& Weingartner, A. (2013). PiatetskiShapiro sequences. Acta Arithmetica, 1(157), 37-68.
[3] Cao, X., \& Zhai, W. (1998). The distribution of square-free numbers of the form $\left\lfloor n^{c}\right\rfloor$. Journal de théorie des nombres de Bordeaux, 10(2), 287-299.
[4] Deshouillers, J. M. (2019). A remark on cube-free numbers in Segal-Piatestki-Shapiro sequences. Hardy-Ramanujan Journal, 41, 127-132.
[5] Dimitrov, S. I. (2022). Exponential sums over Piatetski-Shapiro primes in arithmetic progressions. Preprint. arXiv:2211.10928.
[6] Dimitrov, S. I. (2022). Primes of the form $\left\lfloor n^{c}\right\rfloor$ with square-free n. Preprint. arXiv:2207.09808.
[7] Dimitrov, S. I. (2022). A Bombieri-Vinogradov type result for exponential sums over Piatetski-Shapiro primes. Lithuanian Mathematical Journal, 62(4), 435-446.
[8] Guo, V. Z., Li, J., \& Zhang, M. (2023). Piatetski-Shapiro primes in arithmetic progressions. The Ramanujan Journal, 60(3), 677-692.
[9] Guo, V. Z., \& Qi, J. (2022). A Generalization of Piatetski-Shapiro Sequences. Taiwanese Journal of Mathematics, 26(1), 33-47.
[10] Ivić. A, (1985). The Theory of the Riemann Zeta Function. Wiley, New York.
[11] Li, J., Zhang, M., \& Xue, F. (2022). An additive problem over Piatetski-Shapiro primes and almost-primes. The Ramanujan Journal, 57(4), 1307-1333.
[12] Liu, K., Shparlinski, I. E., \& Zhang, T. (2017). Squares in Piatetski-Shapiro sequences. Acta Arithmetica, 181, 239-252.
[13] Ma, S. (2022). On the distribution of k-full lattice points in \mathbb{Z}_{2}. AIMS Mathematics, 7(6), 10596-10608.
[14] Pyatetskii-Shapiro, I. I. (1953). On the distribution of prime numbers in sequences of the form $\lfloor f(n)\rfloor$. Matematicheskii Sbornik, 75(3), 559-566.
[15] Rieger, G. (1978). Remark on a paper of Stux concerning squarefree numbers in non-linear sequences. Pacific Journal of Mathematics, 78(1), 241-242.
[16] Srichan, T. (2021). On the distribution of (k, r)-integers in Piatetski-Shapiro sequences. Czechoslovak Mathematical Journal, 71(4), 1063-1070.
[17] Srichan, T., \& Tangsupphathawat, P. (2020). Square-full numbers in Piatetski-Shapiro sequences. Annales mathématiques du Québec, 44, 385-391.
[18] Stux, I. (1975). Distribution of squarefree integers in non-linear sequences. Pacific Journal of Mathematics, 59(2), 577-584.
[19] Wang, H., \& Zhang, Y. (2023). On the divisor function over Piatetski-Shapiro sequences. Czechoslovak Mathematical Journal, 73(2), 613-620.
[20] Zhang, M., \& Li, J. (2017). Distribution of cube-free numbers with form $\left\lfloor n^{c}\right\rfloor$. Frontiers of Mathematics in China, 12(6), 1515-1525.

