MIN-turns and MAX-turns in k-Dyck paths: A pure generating function approach

Helmut Prodinger
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 30, 2024, Number 2, Pages 213–222
DOI: 10.7546/nntdm.2024.30.2.213-222
Full paper (PDF, 188 Kb)


Authors and affiliations

Helmut Prodinger
1 Department of Mathematics, University of Stellenbosch
7602, Stellenbosch, South Africa
2 NITheCS (National Institute for Theoretical and Computational Sciences),
South Africa


k-Dyck paths differ from ordinary Dyck paths by using an up-step of length k. We analyze at which level the path is after the s-th up-step and before the (s+1)-st up-step. In honour of Rainer Kemp who studied a related concept 40 years ago, the terms max-terms and min-terms are used. Results are obtained by an appropriate use of trivariate generating functions; practically no combinatorial arguments are used.


  • Dyck paths
  • Generating functions
  • Kernel method
  • Lagrange inversion

2020 Mathematics Subject Classification

  • 05A15


  1. Asinowksi, A., Hackl, B., & Selkirk, S. (2022). Down-step statistics in generalized Dyck paths. Discrete Mathematics & Theoretical Computer Science, 24(1), Article 17.
  2. Deng, E. Y. P., & Mansour, T. (2008). Three Hoppy path problems and ternary paths. Discrete Applied Mathematics, 156(5), 770–779.
  3. Flajolet, P., & Prodinger, H. (1987). Level number sequences for trees. Discrete Mathematics, 65(2), 149–156.
  4. Flajolet, P., & Sedgewick, R. (2009). Analytic Combinatorics. Cambridge University Press, Cambridge.
  5. Kemp, R. (1982). On the average oscillation of a stack. Combinatorica, 2(2), 157–176.
  6. Prodinger, H. (2003 / 2004). The kernel method: A collection of examples. Seminaire Lotharingien de Combinatoire, 50, Article B50f.
  7. Prodinger, H. (2023). A walk through my lattice path garden. Seminaire Lotharingien de Combinatoire, 87b, Article #1.
  8. Prodinger, H. (2024). On k-Dyck paths with a negative boundary. Journal of Combinatorial Methods and Combinatorial Computing, 119, 3–12.
  9. Selkirk, S. J. (2019). On a generalisation of k-Dyck paths. Master’s thesis, Stellenbosch University.
  10. Sloane, N. J. A., & The OEIS Foundation Inc. (2023). The On-Line Encyclopedia of Integer Sequences. Available online at: https://oeis.org/

Manuscript history

  • Received: 1 September 2023
  • Accepted: 15 April 2024
  • Online First: 4 May 2024

Copyright information

Ⓒ 2024 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).

Related papers

Cite this paper

Prodinger, H. (2024). MIN-turns and MAX-turns in k-Dyck paths: A pure generating function approach. Notes on Number Theory and Discrete Mathematics, 30(2), 213-222, DOI: 10.7546/nntdm.2024.30.2.213-222.

Comments are closed.