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Abstract: k-Dyck paths differ from ordinary Dyck paths by using an up-step of length k. We
analyze at which level the path is after the s-th up-step and before the (s+1)-st up-step. In honour
of Rainer Kemp who studied a related concept 40 years ago the terms MAX-terms and MIN-terms
are used. Results are obtained by an appropriate use of trivariate generating functions; practically
no combinatorial arguments are used.
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1 Introduction

The objects of our interest in this paper are k-Dyck paths, having up-steps (1, k) and down-steps
(1,−1), and never go below the x-axis. At the end, they reach the x-axis, but we also need
versions that end at a prescribed level different from 0. Much material about such paths can be
found in [9], [7] and in many standard textbooks on combinatorics.

We consider MAX-turns, where each up-step ends and MIN-turns, where each up-step starts.
The Figure 1 explains the concept readily:
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Figure 1. The first 4 MAX-turns and the first 4 MIN-turns are shown.

The k-Dyck paths can only exist for a length of the form (k + 1)N , which is clear for
combinatorial reasons or otherwise. We want to know the average level of the s-th MAX-turn
resp. MIN-turn, amoung all k-Dyck of the same length. In order to do this, we sum the level of
the s-th MAX-turn resp. MIN-turn, over all k-Dyck paths of length (k + 1)N . The generating
functions we obtain, enumerate the (partial) k-Dyck paths that end at a prescribed level j as well;
this is of interest in [2] and later in [7], in the section on Hoppy’s walks.

To get the average, one only needs to divide by the total number of such k-Dyck paths. Our
main achievement is to get the fully explicit functions

MAX(z, w) =
∑

N≥0, s≥1

z(k+1)Nws [cumulative level of the s-th MAX-turn
in all k-Dyck paths of length (k + 1)N ]

and

MIN(z, w) =
∑

N≥0, s≥1

z(k+1)Nws [cumulative level of the s-th MIN-turn
in all k-Dyck paths of length (k + 1)N ].

As a bonus we get OSC(z, w) := MAX(z, w) − MIN(z, w); this cumulates the lengths of the
wavy line between the s-th MAX-turn and s-th MIN-turn, see Figure 1. The function OSC(z, w)

is somewhat simpler than MIN(z, w) and MAX(z, w), because of cancellations. In this way, we
recover some of the results from [1] without resorting to any bijective combinatorics. Note that
such a wavy line might have length zero as well, if two up-steps follow each other immediately.
Rainer Kemp in [5] has considered MAX- and MIN-turns for Dyck paths, although his definitions
were slightly different (peaks and valleys).

The key to the success of our method is the simple but perhaps unusual identity∑
i≥0

(
[zi]f(z)

)
· yi = f(y).
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2 Some basic observations

As we will see soon, the equation u = z + zwuk+1 plays a major role when enumerating k-Dyck
paths. The equation is of the form u = zΦ(u), with Φ(u) = 1 + wuk+1, so it is amenable to the
Lagrange inversion [4], and the coefficients of the inverse function u = u(z) can be computed:

[z(k+1)N+1]u =
1

(k + 1)N + 1
[u(k+1)N ](1 + wuk+1)(k+1)N+1

=
1

(k + 1)N + 1
wN

(
(k + 1)N + 1

N

)
.

One solution of the equation, which is analytic at the origin and has combinatorial significance,
is called u. We will use the formula (again by the Lagrange inversion formula)

u = z
∑
N≥0

wNz(k+1)N 1

kN + 1

(
(k + 1)N

N

)
. (1)

We also need the specialization where w = 1, which we call û, which satisfies the equation
u = z + zuk+1:

û = z
∑
λ≥0

1

(k + 1)λ+ 1

(
1 + (k + 1)λ

λ

)
z(k+1)λ (2)

and (again by the Lagrange inversion formula)

û−k = z−k − z
∑
λ≥0

k

λ+ 1

(
(k + 1)λ

λ

)
z(k+1)λ. (3)

3 MIN-turns

After these classical observations about the implicit function, we move to the treatment of
MIN-turns. Our method of choice is adding a new slice. The following substitution is essential
for adding a new slice (which is an up-step, followed by a maximal sequence of down-steps):

uj −→ zw
∑

0≤i≤j+k

ziuj+k−i =
zwuk+1

u− z
uj − wzk+2

u− z
zj.

The substitution tells us what can become of a partial k-ary path landing at level j when adding
(attaching) another slice landing on level j + k − i. The technique of adding-a-new slice is
described in [3].

Now let Fm(u) = Fm(u; z) be the generating function according to m slices; z refers to the
lengths and u to the level of the m-th MIN-turn. The substitution leads to

Fm+1(u) =
zwuk+1

u− z
Fm(u)−

wzk+2

u− z
Fm(z), F0(u) = 1.

Let F (u) =
∑

m≥0 Fm(u), so that we do not care about the number m anymore, since the variable
w takes care of it; then
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F (u) = F (u; z, w) = 1 +
zwuk+1

u− z
F (u)− wzk+2

u− z
F (z),

or

F (u) =
u− z − wzk+2F (z)

u− z − zwuk+1
.

u = u is a factor of the denominator, but for z and u small, we have u ∼ z, so this factor must
cancel in the numerator as well. This is what one learns from the kernel method [6]. We find

F (z) =
u− z

wzk+2

and further
F (u) = F (u; z, w) =

u− u

u− z − zwuk+1
.

That ends the computation of the “left” part of the k-Dyck path. For the right one, we start at
level h with an up-step and end eventually at the zero level. We do not use the variable w here.
The kernel method could also be used, but there is a simpler way. Reading the path from right
to left, there is a decomposition when the path leaves a level and never comes back to it. Recall
that u/z is the generating function of k-Dyck paths. With this, we find for the enumeration of the
“right” part (u

z

)h

zh
(u
z
− 1

)
=

(u− z)uh

z
;

the minus 1 term happens since the reversed path must end with a down-step. The formula works
only for h ≥ 1, but the instance h = 0 is not needed (although easy). The fact that this generating
function is essentially a power is part of our successful approach. We now have

MIN(z, w) =
∑
h≥1

h[uh]F (u) · (u− z)uh

z

=
∑
h≥1

[uh−1]
d

du
F (u) · (u− z)uh

z

=
(u− z)u

z
· −zu+ uzwuk+1k + uu− uzwuk+1k − uzwuk+1

u(u− z − zwuk+1)2

∣∣∣∣
u=û

=
(u− z)u

z
· −zû+ uzwûk+1k + uû− uzwûk+1k − uzwûk+1

û(û− z − zwûk+1)2
.

A simplification that only uses ûk+1 = û−z
z

eventually leads to

MIN(z, w) =
kwû

z(1− w)2
+

(u− z)

z2(1− w)2ûk
− (k + 1)uw

z(1− w)2

which can be checked easily, even by hand.

Theorem 3.1. The generating funtion MIN(z, w) where the coefficient of z(k+1)Nws refers to the
cumulative levels of the s-th MIN-turn, is given by

MIN(z, w) =
kwû

z(1− w)2
+

(u− z)

z2(1− w)2ûk
− (k + 1)uw

z(1− w)2
.
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The next step is to expand this function:

[ws]MIN(z, w) = [ws]
kwû

z(1− w)2
− [ws]

(k + 1)uw

z(1− w)2
+ [ws]

(u− z)

z2(1− w)2ûk

=
skû

z
− (k + 1)

s−1∑
i=0

(s− i)[wi]
u

z

+
s∑

i=0

(s+ 1− i)[wi]
z
∑

N≥0w
Nz(k+1)N 1

kN+1

(
(k+1)N

N

)
− z

z2ûk

=
skû

z
− (k + 1)

s−1∑
i=0

(s− i)[wi]
u

z

+
s∑

i=0

(s+ 1− i)[wi]

∑
N≥1w

Nz(k+1)N 1
kN+1

(
(k+1)N

N

)
zûk

=
skû

z
− (k + 1)

s−1∑
i=0

(s− i)z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)
+

s∑
i=1

(s+ 1− i)
1

zûk
z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)

=
skû

z
− (k + 1)

s−1∑
i=0

(s− i)z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)
+

s∑
i=1

(s+ 1− i)z(k+1)(i−1) 1

ki+ 1

(
(k + 1)i

i

)
−

s∑
i=1

(s+ 1− i)z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)∑
λ≥0

k

λ+ 1

(
(k + 1)λ

λ

)
z(k+1)λ.

And now we read off the coefficient of z(k+1)N ; we assume that N ≥ s, otherwise a path would
not have an s-th MIN-turn:

[wsz(k+1)N ]MIN(z, w) = sk
1

kN + 1

(
(k + 1)N

N

)
−

s∑
i=1

(s+ 1− i)
1

ki+ 1

(
(k + 1)i

i

)
k

(N − i) + 1

(
(k + 1)(N − i)

(N − i)

)
.

Theorem 3.2. The sum of levels of the s-th MIN-turns in all the k-Dyck paths of length (k+1)N

is given by

sk

kN + 1

(
(k + 1)N

N

)
−

s∑
i=1

(s+ 1− i)
1

ki+ 1

(
(k + 1)i

i

)
k

(N − i) + 1

(
(k + 1)(N − i)

(N − i)

)
.

This formula is fully explicit and covers all instances of N ≥ s.
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4 MAX-turns

It is easy to go from a MIN-turn to the next MAX-turn, just by doing one up-step. On the level of
generating functions, this means

G(u; z, w) = F (u; z, w)wzuk.

The right part of a part (everything from a given MAX-turn until the end) is even easier than
before, since level h must be reached without further restriction. The result for the “right” side of
the path is then ( û

z

)h+1

zh = ûh−1 û
2

z
.

After these preliminaries, we can engage into the big computation:

MAX(z, w) =
∑
h≥1

h[uh]G(u) · ûh−1 û
2

z
=

û2

z

∑
h≥1

[uh−1]
d

du
G(u) · ûh−1

=
wkû

z(1− w)2
− wku

z(1− w)2
+

w(u− z)

z2ûk(1− w)2
− w2u

z(1− w)2
.

The same type of simplifications as before has been applied.
And now we go to the coefficients of this, in a similar style as it was done for the MIN-turns:

[ws]MAX(z, w) = s
kû

z
−

s−1∑
i=0

(s− i)[wi]
ku

z

+
1

zûk

s−1∑
i=0

(s− i)[wi]
(u− z)

z
−

s−2∑
i=0

(s− 1− i)[wi]
u

z

= sk
∑
N≥0

z(k+1)N 1

kN + 1

(
(k + 1)N

N

)

−
s−1∑
i=0

(s− i)z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)

+
s−1∑
i=1

(s− i)z(k+1)(i−1) 1

ki+ 1

(
(k + 1)i

i

)

−
∑
λ≥0

k

λ+ 1

(
(k + 1)λ

λ

)
z(k+1)λ

s−1∑
i=1

(s− i)z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)

−
s−2∑
i=0

(s− 1− i)z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)
.

And, again for N ≥ s, we read off the coefficient of z(k+1)N :

[wsz(k+1)N ]MAX(z, w) = sk
1

kN + 1

(
(k + 1)N

N

)
−

s−1∑
i=1

(s− i)
1

ki+ 1

(
(k + 1)i

i

)
k

N − i+ 1

(
(k + 1)(N − i)

N − i

)
.
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Theorem 4.1. The generating funtion MIN(z, w) where the coefficient of z(k+1)Nws refers to the
cumulative levels of the s-th MAX-turn, is given by

MAX(z, w) =
wkû

z(1− w)2
− wku

z(1− w)2
+

w(u− z)

z2ûk(1− w)2
− w2u

z(1− w)2
.

The coefficient [wsz(k+1)N ]MAX(z, w) is for N ≥ s given by

sk

kN + 1

(
(k + 1)N

N

)
−

s−1∑
i=1

(s− i)
1

ki+ 1

(
(k + 1)i

i

)
k

N − i+ 1

(
(k + 1)(N − i)

N − i

)
.

5 The oscillation

The cumulative function of the s-th oscillation (= total length of the s-th wavy line, cf. Figure 1
in all paths of length (k + 1)N ) is

OSC(z, w) := MAX(z, w)− MIN(z, w).

The simplication is easy:

OSC(z, w) =
wkû

z(1− w)2
− wku

z(1− w)2
+

w(u− z)

z2ûk(1− w)2
− w2u

z(1− w)2

−
[

kwû

z(1− w)2
+

(u− z)

z2(1− w)2ûk
− (k + 1)uw

z(1− w)2

]
=

w(u− z)

z2ûk(1− w)2
− (u− z)

z2ûk(1− w)2
− w2u

z(1− w)2
+

wu

z(1− w)2

=
wu

z(1− w)
− (u− z)

z2ûk(1− w)
.

Further, by reading off coefficients (s ≥ 1),

[ws]OSC(z, w) =
s∑

i=1

[wi]
u

z
−

s∑
i=0

[wi]
(u− z)

z2ûk

=
s∑

i=1

z(k+1)i 1

kN+1

(
(k+1)i

i

)
− 1

zûk

s∑
i=0

[wi]
(u− z)

z

=
s∑

i=1

z(k+1)i 1

kN+1

(
(k+1)i

i

)
− 1

zûk

s∑
i=1

[wi]
∑
N≥1

wNz(k+1)N 1

kN+1

(
(k+1)N

N

)

=
s∑

i=1

z(k+1)i 1

kN+1

(
(k+1)i

i

)
− 1

zûk

s∑
i=1

z(k+1)i
1

ki+1

(
(k+1)i

i

)
.
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The next step is to read off [wsz(k+1)N ]OSC(z, w) (for N ≥ s):

[wsz(k+1)N ]OSC(z, w) = [z(k+1)N ]
s∑

i=1

z(k+1)i 1

kN + 1

(
(k + 1)i

i

)
− [z(k+1)N ]

1

zûk

s∑
i=1

[wi]z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)
= −[z(k+1)N ]

[
z−k−1 −

∑
λ≥0

k

λ+ 1

(
(k + 1)λ

λ

)
z(k+1)λ

] s∑
i=1

z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)

= [z(k+1)N ]
s∑

i=1

z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)∑
λ≥0

k

λ+ 1

(
(k + 1)λ

λ

)
z(k+1)λ

=
s∑

i=1

z(k+1)i 1

ki+ 1

(
(k + 1)i

i

)
k

N − i+ 1

(
(k + 1)(N − i)

N − i

)
.

We summarize the results.

Theorem 5.1. The cumulative (summed over all k-Dyck paths of length (k + 1)N ) difference of
the s-th MAX turn and the (s + 1)-st MIN turn (nicknamed the s-th wavy line) is given by the
explicit formula (for N ≥ s ≥ 1)

s∑
i=1

1

ki+ 1

(
(k + 1)i

i

)
k

N − i+ 1

(
(k + 1)(N − i)

N − i

)
. (4)

In this paper the results have been derived by manipulating power series only; some equivalent
ones were obtained in [1] by other (mostly bijective) methods.

6 Application: Hoppy walks

Deng and Mansour [2], compare also [7], introduce a rabbit named Hoppy and let him move
according to certain rules. While the story about Hobby is charming and entertaining, we do not
need this here and move straight ahead to the enumeration issues. Eventually, the enumeration
problem is one about k-Dyck paths (k ≥ 1). The up-steps are (1, k) and the down-steps are
(1,−1).

The question is about the length of the sequence of down-steps printed in red, see Figure 2. Or,
phrased differently, how many k-Dyck paths end on level j, after m up-steps, the last step being
an up-step. The recent paper [8] contains similar computations, although without the restriction
that the last step must be an up-step.

This question clearly belongs to the realm of the questions discussed here.
In fact, we are looking at the last oscillation (‘wavy line’). If a k-Dyck path has length

(k + 1)N , the last oscillation occurs for s = N . The formula (5) leads for s = N to

N∑
i=1

1

ki+ 1

(
(k + 1)i

i

)
k

N − i+ 1

(
(k + 1)(N − i)

N − i

)
. (5)

Further considerations are in [7].
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m up-steps

j

Figure 2. The number of final down-steps

7 Application: Sequences from The On-Line Encyclopedia
of Integer Sequences

Now we move to instances of formula (5) that appear in [10]. The principal reference is [1].

k = 2 s = N A334680
k = 3 s = N A334682
k = 4 s = N A334719
k = 2 s = 1 A007226
k = 3 s = 1 A007228
k = 4 s = 1 A124724
k = 2 s = 2 A334640
k = 3 s = 2 A334645
k = 4 s = 2 A334646

Tables of other similar sequences can be constructed easily with a computer algebra program,
using explicit formulæ in Theorems 1, 2, 3.
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