Krassimir Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 29, 2023, Number 1, Pages 171–180
DOI: 10.7546/nntdm.2023.29.1.171-180
Full paper (PDF, 262 Kb)
Details
Authors and affiliations
Krassimir Atanassov
1 Department of Bioinformatics and Mathematical Modelling,
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
2 Intelligent Systems Laboratory
Prof. Asen Zlatarov University, Bourgas-8000, Bulgaria
Abstract
The set generated by an arbitrary natural number , was defined in [3]. There, and in [4], some arithmetic functions and arithmetic operators of a modal type are defined over the elements of . Here, over the elements of arithmetic operators of a topological type are defined and some of their basic properties are studied. Perspectives for future research are discussed.
Keywords
- Arithmetic function
- Modal operator
- Natural number
- Set
- Topological operator
2020 Mathematics Subject Classification
- 11A25
References
- Atanassov, K. (1985). Short proof of a hypothesis of A. Mullin. Bulletin of Number Theory and Related Topics, IX(2), 9–11.
- Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg.
- Atanassov, K. (2020). Objects generated by an arbitrary natural number. Notes on Number Theory and Discrete Mathematics, 26(4), 57–62.
- Atanassov, K. (2022). Objects generated by an arbitrary natural number. Part 2: Modal aspect. Notes on Number Theory and Discrete Mathematics, 28(3), 558–563.
- Atanassov, K. (2022). Intuitionistic Fuzzy Modal Topological Structure. Mathematics, 10, Article 3313.
- Atanassov, K. (2022). On the Intuitionistic Fuzzy Modal Feeble Topological Structures. Notes on Intuitionistic Fuzzy Sets, 28(3), 211–222.
- Blackburn, P., van Bentham, J., & Wolter, F. (2006). Modal Logic. North Holland, Amsterdam.
- Bourbaki, N. (1960). Éléments De Mathématique, Livre III: Topologie Générale (3rd ed.). Chapitre 1: Structures Topologiques, Chapitre 2: Structures Uniformes. Herman, Paris.
- Feys, R. (1965). Modal Logics. Gauthier, Paris.
- Fitting, M., & Mendelsohn, R. (1998). First Order Modal Logic. Kluwer, Dordrecht.
- Kuratowski, K. (1966). Topology, Vol. 1. Academic Press, New York.
- Sándor, J., & Crstici, B. (2005). Handbook of Number Theory. II. Springer Verlag, Berlin.
Manuscript history
- Received: 4 October 2022
- Revised: 11 March 2023
- Accepted: 21 March 2023
- Online First: 27 March 2023
- Correction Notice: 23 August 2023Per Author’s request made on 23 August 2023, the following correction is made on page 173, line -11 of the Online First (electronic) version:
Old:
New:
Copyright information
Ⓒ 2023 by the Author.
This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Related papers
- Atanassov, K. (2020). Objects generated by an arbitrary natural number. Notes on Number Theory and Discrete Mathematics, 26(4), 57–62.
- Atanassov, K. (2022). Objects generated by an arbitrary natural number. Part 2: Modal aspect. Notes on Number Theory and Discrete Mathematics, 28(3), 558–563.
- Atanassov, K. (2023). Objects generated by an arbitrary natural number. Part 4: New aspects. Notes on Number Theory and Discrete Mathematics, 29(3), 589-597.
- Atanassov, K. T. (2024). On the set of Set(n)’s. Notes on Number Theory and Discrete Mathematics, 30(3), 590-594.
Cite this paper
Atanassov, K. (2023). Objects generated by an arbitrary natural number. Part 3: Standard modal-topological aspect. Notes on Number Theory and Discrete Mathematics, 29(1), 171-180, DOI: 10.7546/nntdm.2023.29.1.171-180.