A. D. Godase
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 28, 2022, Number 3, Pages 466–476
DOI: 10.7546/nntdm.2022.28.3.466-476
Full paper (PDF, 213 Kb)
Details
Authors and affiliations
A. D. Godase
![]()
Department of Mathematics, V. P. College Vaijapur
Aurangabad (MH), India
Abstract
In this paper, we derive some important identities involving k-Jacobsthal and k-Jacobsthal–Lucas numbers. Moreover, we use multinomial theorem to obtain distinct binomial sums of k-Jacobsthal and k-Jacobsthal–Lucas numbers.
Keywords
- Jacobsthal number
- Jacobsthal–Lucas number
- k-Jacobsthal number
- k-Jacobsthal–Lucas number
2020 Mathematics Subject Classification
- 11B37
- 11B50
References
- Campos, H., Catarino, P., Aires, A. P., Vasco, P., & Borges, A. (2014). On Some Identities of k-Jacobsthal–Lucas Numbers. International Journal of Mathematical Analysis, 8(10), 489–494.
- Carlitz, L., & Ferns, H. (1970). Some Fibonacci and Lucas Identities. The Fibonacci Quarterly, 8(1), 61–73.
- Cerin, Z. (2007). Sums of squares and products of Jacobsthal numbers. Journal of Integer Sequences, 10, Article 07.2.5.
- Godase, A. D. (2022). Some Binomial Sums of k-Jacobsthal and k-Jacobsthal–Lucas numbers. Communications in Mathematics and Applications, submitted (2022).
- Horadam, A. F. (1996). Jacobsthal Representation Numbers. The Fibonacci Quarterly, 34, 40–54.
- Jhala, D., Rathore, G. P. S., & Sisodiya, K. (2014). Some Properties of k-Jacobsthal Numbers with Arithmetic Indexes. Turkish Journal of Analysis and Number Theory, 2(4), 119–124.
- Jhala, D., Rathore, G. P. S., & Sisodiya, K. (2013). On Some Identities for k-Jacobsthal Numbers. International Journal of Mathematical Analysis, 7(12), 551–556.
- Koken, F., & Bozkurt, D. (2008). On the Jacobsthal–Lucas numbers by matrix methods. International Journal of Contemporary Mathematical Sciences, 3(33), 1629–1633.
- Srisawat, S., Sriprad, W., & Sthityanak, O. (2015). On the k-Jacobsthal Numbers by Matrix Methods. Progress in Applied Science and Technology, 5(1), 70–76.
- Uygun, S. (2015). The (s, t)-Jacobsthal and (s, t)-Jacobsthal Lucas Sequences. Applied Mathematical Sciences, 70(09), 3467–3476.
- Uygun, S., & Eldogan, H. (2016). k-Jacobsthal and k-Jacobsthal Lucas Matrix Sequences. International Mathematical Forum, 11, 145–154.
- Uygun, S., & Eldogan, H. (2016). Properties of k-Jacobsthal and k-Jacobsthal Lucas Sequences. General Mathematics Notes, 36(1), 34–47.
- Uygun, S., & Owusu, E. (2016). A new generalization of Jacobsthal numbers (bi-periodic Jacobsthal sequences). Journal of Mathematical Analysis, 7(5), 28–39.
- Uygun, S., & Uslu, K. (2016). The (s, t)-Generalized Jacobsthal Matrix Sequences.
Computational Analysis, Springer Proceedings in Mathematics & Statistics, Vol. 155, 325–336. - Zhang, Z. (1997). Some Identities Involving Generalized Second-order Integer Sequences. The Fibonacci Quarterly, 35(3), 265–267.
Manuscript history
- Received: 22 February 2022
- Revised: 29 July 2022
- Accepted: 1 August 2022
- Online First: 2 August 2022
Related papers
Cite this paper
Godase, A. D. (2022). Binomial sums with k-Jacobsthal and k-Jacobsthal–Lucas numbers. Notes on Number Theory and Discrete Mathematics, 28(3), 466-476, DOI: 10.7546/nntdm.2022.28.3.466-476.
