Neşe Ömür and Sibel Koparal

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 28, 2022, Number 1, Pages 92—99

DOI: 10.7546/nntdm.2022.28.1.92-99

**Download PDF (193 Kb)**

## Details

### Authors and affiliations

**Neşe Ömür**

*Department of Mathematics, University of Kocaeli
41380 Izmit, Kocaeli, Turkey*

**Sibel Koparal**

*Department of Mathematics, University of Bursa Uludağ
16059 Nilüfer, Bursa, Turkey*

### Abstract

In this paper, we establish some sums involving generalized harmonic and Daehee numbers which are derived from the generating functions. For example, for

### Keywords

- Sums
- Generalized harmonic numbers
- Daehee numbers

### 2020 Mathematics Subject Classification

- 05A15
- 05A19
- 11B73

### References

- Benjamin, A. T., Gaebler, D., & Gaebler, R. (2013). A combinatorial approach to

hyperharmonic numbers.*The Electronic Journal of Combinatorial Number Theory*, 3, 1–9. - Benjamin, A. T., Preston, G. O., & Quinn, J. J. (2002). A Stirling encounter with harmonic numbers.
*Mathematics Magazine*, 75, 95–103. - Caralambides, C. A. (2002).
*Enumarative Combinatorics*. New York: Chapman and Hall/Crc. - Cheon, G.-S., & El-Mikkawy, M. (2008). Generalized harmonic numbers with Riordan arrays.
*Journal of Number Theory*, 128(2), 413–425. - Comtet, L. (1974).
*Advanced Combinatorics*, D. Reidel Publishing Company,

Dordrecht-Holland, Boston-U.S.A. - Dattoli, G., Licciardi, S., Sabia, E., & Srivastava, H. M. (2019). Some properties and generating functions of generalized harmonic numbers.
*Mathematics*, 7(7), Article 577. - Dattoli, G., & Srivastava, H. M. (2008). A note on harmonic numbers, umbral calculus and generating functions.
*Applied Mathematics Letters*, 21(7), 686–693. - Duran, O., Ömür , N. & Koparal, S. (2020). On sums with generalized harmonic,

hyperharmonic and special numbers.*Miskolc Mathematical Notes*, 21(2), 791–803. - Genčev, M. (2011). Binomial sums involving harmonic numbers.
*Mathematica Slovaca*, 61(2), 215–226. - Jang, L.-C., Kim, W., Kwon, H.-I., & Kim, T. (2020). On degenerate Daehee polynomials and numbers of the third kind.
*Journal of Computational and Applied Mathematics*, 364, Article 112343. - Kim, D. S., & Kim, T. (2013). Identities involving harmonic and hyperharmonic numbers.
*Advances in Difference Equations*, 2013, Article 235. - Kim, T., & Kim, D. S. (2020). Some Relations of Two Type 2 Polynomials and Discrete Harmonic Numbers and Polynomials.
*Symmetry*, 12(6), Article 905. - Kim, T., Kim, D. S., Kim, H. Y., & Kwon, J. (2020). Some results on degenerate Daehee and Bernoulli numbers and polynomials.
*Advances in Difference Equations*, 2020, Article 311. - Kim, T., Kim, D. S., Kwon, J., & Park, S.-H. (2022). Representation by Degenerate Genocchi Polynomials.
*Journal of Mathematics*, 2022, Article 2339851. - Ömür, N., & Bilgin, G. (2018). Some applications of the generalized hyperharmonic numbers of order r, .. Advances and Applications in Mathematical Sciences, 17(9), 617–627.
- Ömür, N., & Koparal, S. (2018). On the matrices with the generalized hyperharmonic numbers of order
*r*.*Asian-European Journal of Mathematics*, 11(3), Article 1850045. - Rim, S.-H., Kim, T., & Pyo, S.-S. (2018). Identities between harmonic, hyperharmonic and Daehee numbers.
*Journal of Inequalities and Applications*, 2018, Article 168. - Santmyer, J. M. (1997) A Stirling like sequence of rational numbers.
*Discrete Mathematics*, 171(1-3), 229–235. - Simsek, Y. (2014). Special numbers on analytic functions.
*Applied Mathematics*, 5(7), 1091—1098. - Sofo, A., & Srivastava, H. M. (2011). Identities for the harmonic numbers and binomial coefficients.
*The Ramanujan Journal*, 25(1), 93–113.

### Manuscript history

- Received: 24 January 2021
- Revised: 11 February 2021
- Accepted: 16 February 2022
- Online First: 17 February 2022

## Related papers

## Cite this paper

Ömür, N., & Koparal, S. (2022). Sums involving generalized harmonic and Daehee numbers. *Notes on Number Theory and Discrete Mathematics*, 28(1), 92-99, DOI: 10.7546/nntdm.2022.28.1.92-99.