Fibonacci-Zeta infinite series associated with the polygamma functions

Kunle Adegoke and Sourangshu Ghosh
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 95–103
DOI: 10.7546/nntdm.2021.27.4.95-103
Full paper (PDF, 172 Kb)

Details

Authors and affiliations

Kunle Adegoke
Department of Physics and Engineering Physics
Obafemi Awolowo University, Ile-Ife, 220005 Nigeria

Sourangshu Ghosh
Department of Civil Engineering
Indian Institute of Technology, Kharagpur, India

Abstract

We derive new infinite series involving Fibonacci numbers and Riemann zeta numbers. The calculations are facilitated by evaluating linear combinations of polygamma functions of the same order at certain arguments.

Keywords

  • Fibonacci numbers and Lucas numbers
  • Summation identity
  • Series
  • Digamma function
  • Polygamma function
  • Zeta function

2020 Mathematics Subject Classification

  • Primary: 11B39
  • Secondary:
    • 33B15
    • 11B37

References

  1. Adegoke, K. (2021). Fibonacci series from power series. Notes on Number Theory and Discrete Mathematics, 27(3), 44–62.
  2. Edwards, H. M. (1974). Riemann’s Zeta Function, Academic Press.
  3. Erdelyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1981). Higher Transcendental Functions, Vol. 1, Bateman manuscript project.
  4. Frontczak, R. (2020). Infinite series involving Fibonacci numbers and the Riemann zeta function. Notes on Number Theory and Discrete Mathematics 26(2), 159–166.
  5. Frontczak, R. (2020). Problem B-1267, The Fibonacci Quarterly 58(2), 179. Available online at: https://www.fq.math.ca/Problems/ElemProbMay2020.pdf
  6. Frontczak, R. (2020). Problem H-859, The Fibonacci Quarterly 58(3), 281. Available online at: https://www.fq.math.ca/Problems/August2020AdvancedProblems.pdf
  7. Frontczak, R., & Goy, T. (2021). General Infinite Series Evaluations Involving Fibonacci Numbers and the Riemann Zeta Function. Matematychni Studii, 55(2), 115–123.
  8. Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, Wiley-Interscience.
  9. Shannon, A. (2010). Gamma Variate Analysis of Insulin Kinetics in Type 2 Diabetes. International Journal Bioautomation, 14(4), 263–270.
  10. Srivastava, H. M., & Choi, J. (2012). Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Inc.
  11. Vajda, S. (2008). Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover Press.

Related papers

Cite this paper

Adegoke, K., & Ghosh, S. (2021). Fibonacci-Zeta infinite series associated with the polygamma functions. Notes on Number Theory and Discrete Mathematics, 27(4), 95-103, DOI: 10.7546/nntdm.2021.27.4.95-103.

Comments are closed.