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1 Introduction

The Fibonacci numbers, F},, and the Lucas numbers, L,,, are defined, for all integers n by the
Binet formulas:
a — Bn
Fp=——"7-, Ly=a"+p", (1.1)
a—f

where o and f3 are the zeros of the characteristic polynomial, 22> — x — 1, of the Fibonacci
sequence. Thus a + 3 = 1 and a3 = —1; so that a = (1 + +/5)/2 (the golden ratio) and
B = —1/a = (1 —/5)/2. Koshy [8] and Vajda [11] have written excellent books dealing with

Fibonacci and Lucas numbers.
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Our purpose in writing this paper is to employ the properties of the polygamma functions to
derive infinite series identities involving Fibonacci numbers, Lucas numbers and the Riemann
zeta numbers. We will obtain sums such as

0o o () (6

and

14

i(j—l-l
=0

and, in fact, more general series. Here ((n) is the Riemann zeta function.

)C(] + 2)L4j — 7T2 se02 (377'\/3) ,

The digamma function, (z), is the logarithmic derivative of the Gamma function:

d I'(2)

¥(2) = 7108 T() = 1y

where the Gamma function is defined for R(z) > 0 by

F(z)z/oooe—%z—1 dt:/ooo (log(1/t))*~" dt,

and is extended to the rest of the complex plane, excluding the non-positive integers, by analytic
continuation. The Gamma function has a simple pole at each of the points z = - - - , =3, =2, —1, 0.
The Gamma function extends the classical factorial function to the complex plane: ['(z) =
(z — 1)!. The Gamma function has found application in various areas of science, for example
in medicine [9].
The n-th polygamma function 1™ (z) is the n-th derivative of the digamma function:
dn+1

Y0(2) = T logT(:) =+ wM(z), $O() = ¥(2).

The polygamma functions satisfy the recurrence relation,

m!

(m) EAGD) —1ym—
Pz 1) =¥ (@) + (1) (12)
and the reflection relation,
(=D)mp™(1 — 2) — ™ (2) = T cot(mz). (1.3)
Zm

The Taylor series for the polygamma functions is

(- 1)7”““w<(m +j+ 1) =9+ 1), m>1, (1.4)
=0 I

—7+Z PG + 1) = (e + 1), (15)

where 7 is the Euler—Mascheronl constant and ((n), n € C, is the Riemann zeta function, defined
by

=1

Z o >1,
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and analytically continued to all n € C with £(n) > 0, n # 1 through

1 (=)
C(n)_1_21—nz( jv)z ’
j=1

Further information on the polygamma functions can be found in the books by Erdélyi et al. [3,
§1.16] and Srivastava and Choi [10, p. 33]. The book by Edwards [2] is a good treatise on the
Riemann zeta function.

Infinite series involving Fibonacci numbers and Riemann zeta numbers were also derived by
Frontczak [4-6], Frontczak and Goy [7] and Adegoke [1].

2 Preliminary results

Here we derive more functional equations for the polygamma functions. We also evaluate required
linear combinations of the polygamma function at appropriate arguments.

2.1 Functional equations

Writing —~ for 2 in the recurrence relation (1.2) and making use of the reflection relation (1.3),
we obtain the duplication formula

m |

P (—2) — (1) (2) = (1) cot(nz) + @1
and consequently,
" m . " m! m!
§ ) = ) = ) = )+ T~
m m (2.2)
+m —— cot(72) —m ——cot(rz)| , meven,
dz I dz =y
" m m m m! m!
W)+ () =~ @) ) + S
m m (2.3)
ke cot(mz) T cot(mz)| , modd.
z=zx 2=y
In particular, if z + y = 1, then,
m m! m!
U (=) = (—y) = =7 o COUm2)| = e, meven,  (24)
z=y
VI (=) + P (—y) = —7 o cot(mz)| + g e L odd. (2.5)
z=y
Writing 1/2 — z for z in (1.3) gives
1 1 am
(—1)mpm) (5 + z) — g™ (5 - z) =T cot(mx) : (2.6)
x=1/2—2
Eliminating )™ (z) between (1.2) and (1.3) gives
Y1+ 2) — (=)™ (1 = 2) = S cot(mz) + T (2.7)
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If z — y = 1, then the recurrence relation gives

while if x + y = 1, the reflection relation gives

m

Y (@) = (—1)"Y(y) = —7 < cot(r2)

The recurrence relation has the following consequences:
P (@4 1) =My + 1) = (@) =™ (y) -

$m+1 + ym+1

¢(m)($ +1) 4+ ™) (y+1) = ¢(m)(x) + @/}(m)(y) + (—1)mm!W

(2.8)

2.9

(2.10)

(2.11)

Forany x and y suchthat 1l —x ¢ Z~,1 —y ¢ Z~ and = # 1, y # 1, relation (2.7) implies

V(1) = (14 ) = (1) (B (1= 2) = e (1))

— T——cot — cot
M €O (rz) + Wdym cot(my)
(=1D)™m!  (=1)"m!
xm—&—l - ym+1 )

Y1+ ) + (14 ) = (1) (P = 2) + 61 - )

™m ™m

i cot(mzx) — Wdy_m cot(my)
(=D)™m!  (=1)"m!
xm—s—l ym—l—l

From the functional equation (2.12), it follows that if m is even and = + y = 1, then,

m

m! m!

m+1 - m+1 °
=y x y

From the functional equation (2.13), it follows that if m is odd and = + y = 1, then,

P4 a) + M (14 y) =7 o cot(rz)| -
Zm
2=y

m! m!
pm+l - ym—‘rl :

If m is an even number and x + y = 2, equation (2.12) gives

P+ 2) = (1t ) = =7 o cot(n2)
Zm Z=X
m! m) m)!
+ (1 _ y>m+1 + pmtl ymt )
while if m is an odd number and x 4 y = 2, equation (2.13) gives
P+ 2) ™14 y) = -7 Tom cot(mz)
Zm Z=X
m)! m! m)!
B (1 — y)mtl Togmtl yml
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(2.14)

(2.15)
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(2.17)



Note that we used
m

T cot(mz)

+m —— cot
_ (e (7z)

and -
T cot(mz)

m

—— cot
- +m T €O (72)

From (2.6) we have

m

—— cot
+7 Tom €O (72)

m

+7 T cot(mz)

z=1/2—x z=1/2—y

Thus, if m is even and « + y = 1, then from (2.18) and the duplication formula, we have

(o) e o

m

=T cot(mz)

m!

z=1/2—y

and if m is odd and =z + y = 1, then from (2.19) and the duplication formula, we have

™) (% - :v) +1p™) (% + y)

m

m!
T (2] 2=1/2—y (z —1/2)mH
2.2 Evaluation at various arguments
Lemma 1. We have
™ (a) =M™ (B) = —x T cot(mz) , meven,
Zm zZ=x
(m) (m) d
P (o) +p(B) = -7 o cot(mz) ,  modd,
Zm Z=x

dm
Y™ (a?) — ™) =1 T cot(mz) +m!F, V5, meven,

==
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(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)



dm
VM (a?) + ™ (3%) = —x P cot(mz) —m! Ly, modd, (2.25)
z=p
¢(m)(a3) _ w(m)(ﬁi%) =7 j—mm cot(mz) + \/_Ljn—i—l
o e (V5) (2.26)
+ %Fmﬂx/g, m even,
am m! m!
(m) (3 (m) g3y — _r — —

P (o) + (7)) = - T cot(mz) (B 2w Ly, modd, (2.27)

am ml2m+l
M (a?/2) — ™ (5% /2) = = — cot(nz) +———, meven, (2.28)

/ / dzm z:\/5/2 (\/g>m+1

dm m!2m+1
Y™ (a?/2) + ™ (B2 /2) = —1 — cot(m2) ——— . modd, (2.29)

/ / dzm z=\/5/2 (\/g)m+1

dm
Y™ (a" /L) — ™ (/L) = —7 Tom cot(mz) ,  meven, (2.30)
z=a" /L,
dm
Y™ (a” /L) + "™ (BT /L,) = —7 o cot(72) . modd, (2.31)
z=a" /Ly

o (72 = o () = COTE @B a)

VM (14207 /L) — ™ (1 + 28"/ L,)

m L+t —1)'m! L™ E, ., 5
= —71 — cot(7z) 4 _ ElmiLy ( H)\/_, m even,
dz™m =207 /L (FT\/g>m+l om+1
(2.33)
W1+ 207 /L) + ¢ (1 + 267/ L)
- cot(mz) _mb mE Ly g, PPV
dzm 207 /L, (Fr\/g)m-i-l 9m+1 ) )
Y (=a”[Ly) — ™ (=" /L,)
m 2.35
=T cot(mz) - m!L,’TLH(—l)TFT(mH)\/g, m even, (235)
2 2=B" /L,
W (=a” /L) + "™ (=" /L)
m 2.36
=T cot(mz) +m! L Lyni1y,  modd. (236)
Zm
Zzﬁr/Lr
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Proof. To prove (2.22) and (2.23), set x = «a, y = [ in (2.9). To prove (2.24) and (2.25), set
r = a,y = fin (2.14) and (2.15). Setting x = 2a, y = 23 in (2.16) and (2.17) gives (2.26)
and (2.27). To prove (2.28) and (2.29) set + = «a, y = [ in (2.20) and (2.21). Use of = =
a"/L, and y = ("/L, in (2.9) gives (2.30) and (2.31). Identity (2.32) is obtained by setting
r = a"/(F/5)and y = B7/(F.\/5) in (2.8). Identities (2.33) and (2.34) follow from (2.16)
and (2.17), upon setting x = 2a” /L, and y = 25"/ L,.. 1dentities (2.35) and (2.36) are obtained
from (2.4) and (2.5), withx = " /L, andy = 5"/ L,. O

3 Main results

Theorem. If r is an integer, then,

> (- J“—J)g(m +j+1)F,

o ! (F)
-5 {1 +a"2) =™ A+ 872)},  meven, m >0,

> (= mﬂ) IR+ g+ 1) Ly

=0 ' (L)

=M1 +a2) + ™ (14 52), modd m>1.

Proof. Writing " z for 2 in the Taylor series (1.4), we obtain

> (-1)m+ﬁ+lw«m +ij4+ 1D =™ (a2 4 1). (3.1)
j=0 '

Similarly,
> o I )50 = (s 1), (3.2)

I
o

J
If m is even, then subtraction of (3.2) from (3.1) gives (F) while if m is odd, their addition
produces (L), on account of the Binet formulas. [l

Note that, in view of identities (2.10) and (2.11), the right hand side of (F) and (L) can be
expressed as:

% {0t (072 +1) — ™ (B2 + 1)}
e (3.3)
B % (Ha2) =g}~ T R, meven,
P (072 + 1) + (B2 + 1)
(3.4)

!
— w(m)(ar2> + w(m)<ﬁr2) _ %Lr(m—%l): modd.
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Corollary 1. Ifr is an integer, then,

Z J+1MC<m +5+ 1)Frj

= gL
r & —— cot(7z) (—=1)m!L™F, m
— cot(rz — (= L Fr ) even,
S VB e 2="/Lr
oy (m )] .
Z (—1)]WC(W +J+ 1)Ly
J=0 T
=T cot(mz) —m! L Lyny, modd.
2™ Zzﬁrl/Lr

Proof. Set z = 1/L, in (F) and (L), noting (3.3) and (3.4) and using (2.30) and (2.31).

Example 1. We have

3 6 6

V5

J=1
Proof. Setm = 2,r = 2in (3.5).

Corollary 2. If r is an integer with |r| > 1, then,

o0

m + )
Z j+1Tj)234(m+] +1)F,;

L e mILm+
= ——= cot(mz - =
\/_ dZ z=2a" /Ly (Fr \/5>m+1

r m!er+1Fr(m+1)

Jj=1

—(-1) St , meven,
C +
S (-1 D i 44 1)L
s gL
am |Lm+l LI L
=-T cot(mz) i —_— m r2m+1( D modd.
z z=2a" /L, (F""\/g)
Proof. Set z =2/L, in (F) and (L) and use (2.33) and (2.34).
Corollary 3. If r is an integer with |r| > 1, then,
— (m +j)! . dr
———((m+j+1)F,; = cot(mz) ,  meven,
jz:; j' Lgﬂ ’ \/_ dZ z=p" /L,
Z 'LJ ((m+j+1)L,; = Wd—mCOt(WZ) o m odd .
7=0 z=pB" /Ly

Proof. Set z = —1/L, in (F) and (L) and use (2.35) and (2.36).
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Z J“—j DU+ 2)C(] +3)Fy; = 2—7T3tan (77_\/5> sec? (W—\/g> —432.

(3.5)

(3.6)

(3.7

(3.8)

(3.9)

(3.10)

(3.11)



Example 2. We have

GG +2) . 27 ™5\ (75
; TC(] +3)Fy; = 7 tan ( R R (3.12)
(j+1) .. B 31v5
;0 = C(]—|—2)L4j—7rzsec2< o ) . (3.13)
Proof. To prove (3.12), set m = 2, r = 2 in (3.10). To prove (3.13), set m = 1, r = 4
in (3.11). ]
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