Renata Passos Machado Vieira, Milena Carolina dos Santos Mangueira, Francisco Regis Vieira Alves and Paula Maria Machado Cruz Catarino
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 32–42
DOI: 10.7546/nntdm.2021.27.4.32-42
Full paper (PDF, 181 Kb)
Details
Authors and affiliations
Renata Passos Machado Vieira
Department of Mathematics, Federal Institute of Education, Science and Techonology
of State of Ceara – IFCE, Treze of Maio, Brazil
Milena Carolina dos Santos Mangueira
Department of Mathematics, Federal Institute of Education, Science and Techonology
of State of Ceara – IFCE, Treze of Maio, Brazil
Francisco Regis Vieira Alves
Department of Mathematics, Federal Institute of Education, Science and Techonology
of State of Ceara – IFCE, Treze of Maio, Brazil
Paula Maria Machado Cruz Catarino
University of Tras-os-Montes and Alto Douro – UTAD
Vila Real, Portugal
Abstract
In this work, new results are explored in relation to the Leonardo sequence. With that, a study about this second order recursive sequence, little explored in the mathematical scope, is briefly presented, relating it to the Fibonacci sequence. Thus, its complexification process is carried out, where from its one-dimensional model, imaginary units are inserted, obtaining Leonardo’s three-dimensional numbers. In this way, the imaginary units i and j are inserted. Finally, some three-dimensional identities are presented for Leonardo’s numbers.
Keywords
- Two-dimensional relations
- Three-dimensional relations
- Leonardo sequence
- Fibonacci sequence
2020 Mathematics Subject Classification
- 11B37
- 11B39
References
- Alves, F. R. V., & Vieira, R. P. M. (2019). The Newton Fractal’s Leonardo Sequence Study with the Google Colab. International Eletronic Journal of Mathematics Education, 15(2), 1–9.
- Alves, F. R. V., Catarino, P. M. M. C., Vieira, R. P. M., & Mangueira, M. C. S. (2020). Teaching recurrent sequences in Brazil using historical facts and graphical illustrations. Acta Didactica Napocensia, 13(1), 87–104.
- Catarino, P., & Borges, A. (2019). On Leonardo numbers. Acta Mathematica Universitatis Comenianae, 89(1), 75–86.
- Harman, C. J. (1981). Complex Fibonacci numbers. The Fibonacci Quarterly, 19(1), 82–86.
- Oliveira, R. R., Alves, F. R. V., & Paiva, R. E. B. (2017). Identidades bi e tridimensionais para os numeros de Fibonacci na forma complexa. CQD-Revista Eletronica Paulista de Matematica, Bauru, 11, 91–106.
- Shannon, A. G. (2019). A note on generalized Leonardo numbers. Notes on Number Theory and Discrete Mathematics, 25(3), 97–101.
- Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2019). Relacoes bidimensionais e identidades de Leonardo. Revista Sergipana de Matematica e Educacao Matematica, 4(2), 156–173.
Related papers
Cite this paper
Vieira, R. P. M., Mangueira, M. C. S., Alves, F. R. V., & Catarino, P. M. M. C. (2021). Leonardo’s three-dimensional relations and some identities. Notes on Number Theory and Discrete Mathematics, 27(4), 32-42, DOI: 10.7546/nntdm.2021.27.4.32-42.