Milena Carolina dos Santos Mangueira, Renata Passos Machado Vieira, Francisco Regis Vieira Alves and Paula Maria Machado Cruz Catarino
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Page 276–279
DOI: 10.7546/nntdm.2021.27.4.276-279
Download Corrigendum: PDF, 140 Kb)
Details
Authors and affiliations
Milena Carolina dos Santos Mangueira
Department of Mathematics, Federal Institute of Education, Science and Technology
of State of Ceara – IFCE, Treze of Maio, Brazil
Renata Passos Machado Vieira
Department of Mathematics, Federal Institute of Education, Science and Technology
of State of Ceara – IFCE, Treze of Maio, Brazil
Francisco Regis Vieira Alves
Department of Mathematics, Federal Institute of Education, Science and Technology
of State of Ceara – IFCE, Treze of Maio, Brazil
Paula Maria Machado Cruz Catarino
University of Tras-os-Montes and Alto Douro – UTAD
Vila Real, Portugal
References
- Mangueira, M. C. dos S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. (2021). The Oresme sequence: The generalization of its matrix form and its hybridization process. Notes on Number Theory and Discrete Mathematics, 27(1), 101–111.
- Bilgici, G., Tokeser, U., & Unal, Z. (2017). k-Fibonacci and k-Lucas Generalized Quaternions. Konuralp Journal of Mathematics, 5(2), 102–113.
- Daşdemir, A., & Bilgici, G. (2019). Gaussian Mersenne numbers and generalized Mersenne quaternions. Notes on Number Theory and Discrete Mathematics, 25(3), 87–96.
- Daşdemir, A. (2016). Generalizations of Modified Pell and Pell Lucas Sequences and Their Generating Matrices and Some Sums. Erzincan University Journal of Science and Technology, 9(3), 178–184.
- Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications. [S.l.]. New York: Wiley and Sons Publications, 1.
- Şentürk, T. D., Daşdemir, A., Bilgici, G., & Unal, Z. (2019). On unrestricted Horadam generalized quaternions. Utilitas Mathematica, 110, 89–98.
- Vieira, R., Alves, F. R., & Catarino, P. (2020). (s1, s2)-Padovan matrix sequence and the case of generalization. Analele stiintifice ale Universitatii “Al. I. Cuza” din Iasi Mat. (N.S.) (to appear).
Related papers
- Mangueira, M. C. dos S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. (2021). The Oresme sequence: The generalization of its matrix form and its hybridization process. Notes on Number Theory and Discrete Mathematics, 27(1), 101–111.
Cite this paper
Mangueira, M. C. dos S., Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. (2021). Corrigendum to “The Oresme sequence: The generalization of its matrix form and its hybridization process” [Notes on Number Theory and Discrete Mathematics, Vol. 27, 2021, No. 1, 101–111]. Notes on Number Theory and Discrete Mathematics, 27(4), 276-279, DOI: 10.7546/nntdm.2021.27.4.276-279.