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The present Corrigendum contains a list of corrections applicable to the authors’ paper [1].

1. In the Introducion part, where was written “On = −n2n, with n being a positive integer”
replace for “On = n · 2−n, for an integer n ≥ 0”.

2. For Theorems 2.1, 2.2 and 2.4, where was written:

For O =

[
1 −1

4

1 0

]
we have that: On =

[
2On+1 −1

2
On

2On −1
2
On−1

]n

, n > 1;
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For O =

[
0 1

−1
4

1

]
, we have that: On =

[
−1

2
On−1 2On

−1
2
On 2On+1

]n

, n > 1.

For σ =

[
0 1

−4 4

]
, we have to: σn =

[
2O−n+1 −1

2
O−n

2O−n −1
2
O−n−1

]n

, for n > 0.

replace with:

For O =

[
1 −1

4

1 0

]
, we have that: On =

[
2On+1 −1

2
On

2On −1
2
On−1

]
, n > 1;

For O =

[
0 1

−1
4

1

]
, we have that: On =

[
−1

2
On−1 2On

−1
2
On 2On+1

]
, n > 1;

For σ =

[
0 1

−4 4

]
, we have to: σn =

[
2O−n+1 −1

2
O−n

2O−n −1
2
O−n−1

]
, for n > 0.

3. In Definition 2.3, where was written “n < 0” replace for “n > 0”.

4. In the Properties inherent to matrices section, it is verified that the presented properties
are valid for n = 1 but it is not possible to obtain the same result when modifying n. Thus,
in this errata, we present properties that are valid for every n assigned:

Property 2.6. For any integer n, r, 1 6 n < r, we have:

On+r = 2OnOr+1 −
1

2
On−1Or.

Proof. According to Theorem 2.1 and some properties for square matrix exponents, we
have:

On+r = OnOr,[
2On+r+1 −1

2
On+r

2On+r −1
2
On+r−1

]
=

[
2On+1 −1

2
On

2On −1
2
On−1

][
2Or+1 −1

2
Or

2Or −1
2
Or−1

]
.

Considering the element a21 we have:

2On+r = 2On2Or+1 −
1

2
On−12Or,

On+r = 2OnOr+1 −
1

2
On−1Or.

Note 2.7. On Property 2.6, if n = 1, we have:

On+r = 2OnOr+1 −
1

2
On−1Or,

Or+1 = 2O1Or+1 −
1

2
O0Or,

Or+1 = 2
1

2
Or+1 −

1

2
0Or,

Or+1 = Or+1.

277



Property 2.8. For any integer m, r, 0 < m < r, we have to:

On+r+1 = 2On+1Or+1 −
1

2
OnOr.

Proof. According to Property 2.6 and the element a11, we have:

2On+r+1 = 2On+12Or+1 −
1

2
On2Or,

On+r+1 = 2On+1Or+1 −
1

2
OnOr.

Note 2.9. On Property 2.8, if n = 1, we have to:

On+r+1 = 2On+1Or+1 −
1

2
OnOr,

Or+2 = 2O2Or+1 −
1

2
O2Or,

Or+2 = 2
2

4
Or+1 −

1

2
.
2

4
Or,

Or+2 = Or+1 −
1

4
Or.

Property 2.10. For any integer n, r, 0 < n < r, we have:

O−n−r = 2O−nO−r+1 −
1

2
O−n−1O−r.

Proof. According to Theorem 2.4 and some properties for square matrix exponents, we
have:

σn+r = σnσr,[
2O−n−r+1 −1

2
O−n−r

2O−n−r −1
2
O−n−r−1

]
=

[
2O−n+1 −1

2
O−n

2O−n −1
2
O−n−1

][
2O−r+1 −1

2
O−r

2O−r −1
2
O−r−1

]
.

Considering the left and right elements, we have:

2O−n−r = 2O−n2O−r+1 −
1

2
O−n−12O−r,

O−n−r = 2O−nO−r+1 −
1

2
O−n−1O−r.

Note 2.11. In Property 2.11, if n = 1, we have:

O−n−r = 2O−nO−r+1 −
1

2
O−n−1O−r,

O−1−r = 2O−1O−r+1 −
1

2
O−2O−r,

O−r−1 = −4O−r+1 + 4O−r,

O−r−1 = 4O−r − 4O−r+1.

Property 2.12. For any integer n, r, 0 < n < r, we have:

O−n−r+1 = 2O−n+1O−r+1 −
1

2
O−nO−r.
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Proof. According to Property 2.10 and and the element a11, we have:

2O−n−r+1 = 2O−n+12O−r+1 −
1

2
O−n2O−r,

O−n−r+1 = 2O−n+1O−r+1 −
1

2
O−nO−r.

Note 2.13. In Property 2.12, if n = 1, we have:

O−n−r+1 = 2O−n+1O−r+1 −
1

2
O−nO−r,

O−r = 2O0O−r+1 −
1

2
O−1O−r,

O−r = 2(0)O−r+1 −
1

2
(−2)O−r,

O−r = O−r.

5. And yet, it was possible to identify some references that are not mentioned throughout the
text, they are [2–7].
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