Bahar Kuloğlu, Engin Özkan and Anthony G. Shannon
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 245–256
DOI: 10.7546/nntdm.2021.27.4.245-256
Full paper (PDF, 149 Kb)
Details
Authors and affiliations
Bahar Kuloğlu
Graduate School of Natural and Applied Sciences
Erzincan Binali Yıldırım University, Erzincan, Turkey
Engin Özkan
Department of Mathematics, Faculty of Arts and Sciences
Erzincan Binali Yıldırım University, Erzincan, Turkey
Anthony G. Shannon
Warrane College, The University of New South Wales
Kensington 2033, Australia
Abstract
In this paper, we introduce the incomplete Vieta–Pell and Vieta–Pell–Lucas polynomials. We give some properties, the recurrence relations and the generating function of these polynomials with suggestions for further research.
Keywords
- Binet’s formula
- Generating function
- Incomplete generalized Vieta–Pell polynomials
- Incomplete generalized Vieta–Pell–Lucas polynomials
2020 Mathematics Subject Classification
- 11B39
- 11B83
References
- Catarino, P., & Campos, H. (2017). Incomplete k-Pell, k-Pell-Lucas and modified k-Pell numbers. Hacettepe Journal of Mathematics and Statistics, 46(3), 361–372.
- Dikici, R., & Özkan, E. (2003). An application of Fibonacci sequences in groups. Applied Mathematics and Computation, 136 (2–3), 323–331.
- Filipponi, P. (1996). Incomplete Fibonacci and Lucas numbers. Rendiconti del Circolo Matematico di Palermo, 45(2), 37–56.
- Filipponi, P., & Horadam, A. F. (1999). Integration sequences of Jacobsthal and Jacobsthal–Lucas Polynomials, in Fredric T Howard (ed.), Applications of Fibonacci Numbers, Volume 8. Dordrecht: Kluwer, 129–139.
- Kim, D. S., & Kim, T. (2021). Degenerate Sheffer sequence and λ-Sheffer sequence. Journal of Mathematical Analysis and Applications, 493(1), 124521
- Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience, New York.
- Özkan, E. (2003). 3-Step Fibonacci Sequences in Nilpotent Groups. Applied Mathematics and Computation, 144, 517–527.
- Özkan E. (2003). On General Fibonacci Sequences in Groups. Turkish Journal of Mathematics, 27(4), 525–537.
- Özkan, E., & Altun, İ. (2019). Generalized Lucas Polynomials and Relationships between the Fibonacci Polynomials and Lucas Polynomials. Communications in Algebra, 47, 10–12.
- Özkan, E., & Taştan, M. (2020). On Gauss Fibonacci Polynomials, Gauss Lucas Polynomials and Their Applications. Communications in Algebra, 48(3), 952–960.
- Pinter, A., & Srivastava, H. M. (1995). Generating Functions of The Incomplete Fibonacci And Lucas Numbers. Rendiconti Del Circolo Matematico Di Palermo, Xlviii, 91–596, 9.
- Ramírez, J. (2015). Incomplete generalized Fibonacci and Lucas polynomials. Hacettepe Journal of Mathematics and Statistics, 44(2), 363–373.
- Ramírez, J. (2013). Incomplete k-Fibonacci and k-Lucas numbers. Chinese Journal of Mathematics, Article ID 107145.
- Roman, S. (1984). The umbral calculus, Pure and Applied Mathematics, 111. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984, x+193 pp. ISBN: 0-12-594380-6.
- Srivastava, H. M., & Manocha, H. L. A. (1984). Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York.
- Shannon, A. G., & Horadam, A. F. (1971). Generating functions for powers of third order recurrence sequences. Duke Mathematical Journal, 38(4), 791–794.
- Shannon, A. G., & Bernstein, L. (1973). The Jacobi–Perron algorithm and the algebra of recursive sequences. Bulletin of the Australian Mathematical Society, 8(2), 261–277.
- Shannon, A. G., & Horadam, A. F. (1999). Some Relationships among Vieta, Morgan-Voyce and Jacobsthal Polynomials, in Fredric T Howard (ed.), Applications of Fibonacci Numbers, Volume 8. Dordrecht: Kluwer, 307–323.
- Taşçı, D., & Yalçın, F. (2013). Vieta–Pell and Vieta–Pell–Lucas polynomials. Advances in Difference Equations, 2013, Article no. 224.
- Uygun, Ş., Karataş, H., & Aytar, H. (2020). Notes on Generalization of Vieta–Pell and Vieta– Pell–Lucas polynomials. International Journal of Mathematics Research, 12(1), 5–22.
Related papers
Cite this paper
Kuloğlu, B., Özkan, E., & Shannon, A. G. (2021). Incomplete generalized Vieta–Pell and Vieta–Pell–Lucas polynomials. Notes on Number Theory and Discrete Mathematics, 27(4), 245-256, DOI: 10.7546/nntdm.2021.27.4.245-256.