József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 149–153
DOI: 10.7546/nntdm.2021.27.4.149-153
Full paper (PDF, 148 Kb)
Details
Authors and affiliations
József Sándor
Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania
Abstract
We study certain inequalities for the prime counting function π(x). Particularly, a new proof and a refinement of an inequality from [1] is provided.
Keywords
- Prime counting function
- Inequalities
- Hardy–Littlewood conjecture
2020 Mathematics Subject Classification
- 11A25
- 11A41
References
- Alzer, H., Kwong, M. K., & Sándor, J. (2021). Inequalities for π(x). Rendiconti del Seminario Matematico della Universita di Padova, 145(2), 1–15 (to appear).
- Panaitopol, L. (2001). Some generalizations for a theorem by Landau. Mathematical Inequalities & Applications, 4(3), 327–330.
- Rosser, J. B., & Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6(1), 64–94.
- Sándor, J., Mitrinovic, D. S., & Crstici, B. (2006). Handbook of Number Theory. I, Springer.
- Sándor, J., & Atanassov, K. T. (2021). Arithmetic Functions, Nova Science Publishers, New York.
- Segal, S. L. (1962). On π(x+y) ≤ π(x)+π(y). Transactions of the American Mathematical Society, 104, 523–527.
Related papers
- Sándor, J. (2022). On certain inequalities for the prime counting function – Part II. Notes on Number Theory and Discrete Mathematics, 28(1), 124-128.
- Sándor, J. (2023). On certain inequalities for the prime counting function – Part III. Notes on Number Theory and Discrete Mathematics, 29(3), 454-461.
Cite this paper
Sándor, J. (2021). On certain inequalities for the prime counting function. Notes on Number Theory and Discrete Mathematics, 27(4), 149-153, DOI: 10.7546/nntdm.2021.27.4.149-153.