On certain inequalities for the prime counting function

József Sándor
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 149–153
DOI: 10.7546/nntdm.2021.27.4.149-153
Full paper (PDF, 148 Kb)

Details

Authors and affiliations

József Sándor
Department of Mathematics, Babeș-Bolyai University
Cluj-Napoca, Romania

Abstract

We study certain inequalities for the prime counting function π(x). Particularly, a new proof and a refinement of an inequality from [1] is provided.

Keywords

  • Prime counting function
  • Inequalities
  • Hardy–Littlewood conjecture

2020 Mathematics Subject Classification

  • 11A25
  • 11A41

References

  1. Alzer, H., Kwong, M. K., & Sándor, J. (2021). Inequalities for π(x). Rendiconti del Seminario Matematico della Universita di Padova, 145(2), 1–15 (to appear).
  2. Panaitopol, L. (2001). Some generalizations for a theorem by Landau. Mathematical Inequalities & Applications, 4(3), 327–330.
  3. Rosser, J. B., & Schoenfeld, L. (1962). Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics, 6(1), 64–94.
  4. Sándor, J., Mitrinovic, D. S., & Crstici, B. (2006). Handbook of Number Theory. I, Springer.
  5. Sándor, J., & Atanassov, K. T. (2021). Arithmetic Functions, Nova Science Publishers, New York.
  6. Segal, S. L. (1962). On π(x+y) π(x)+π(y). Transactions of the American Mathematical Society, 104, 523–527.

Related papers

Cite this paper

Sándor, J. (2021). On certain inequalities for the prime counting function. Notes on Number Theory and Discrete Mathematics, 27(4), 149-153, DOI: 10.7546/nntdm.2021.27.4.149-153.

Comments are closed.