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1 Introduction

Let π(x) denote the number of primes ≤ x, where x ≥ 1 is an integer. The famous Hardy–
Littlewood conjecture states that the inequality

π(x+ y) ≤ π(x) + π(y) (1)

is valid for all x, y ≥ 2. Neither a proof nor a counterexample is known up to now.
There exist many inequalities in the literature, related to (1). For a survey of results, see the

recent paper [1] of the author and H. Alzer and M. K. Kwong.
Many earlier results on π(x) can be found in Chapter VII of the monograph [4]. For connections

with other arithmetic functions, see the recent book [5] (see pp. 159–160).
One of the main results, proved in [1], is the inequality (see Theorem 1 of [1])

π2(x+ y) ≥ 16

9
π(x).π(y), (2)

where x, y ≥ 2 and with equality only for x = y = 5.
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For x = y in (2), we get the result that

π(2x) ≥ 4

3
.π(x), (3)

with equality only for x = 5. This is a converse of the famous Landau inequality

π(2x) ≤ 2π(x), (x ≥ 2). (4)

Another result of [1] is the following (see left-hand side of Theorem 6 of [1]):

1

2
≤ π(x)x/(x+y).π(y)y/(x+y)

π(x+ y)
. (5)

The aim of this paper is to prove that, a converse inequality of (1) holds true, and this gives a
new proof, as well as a refinement of (2). Another result will be motivated by relation (5).

2 Main results

The following classical inequality due to Rosser and Schoenfeld [3] will be used:
Lemma For all x ≥ 67 one has

x

log x− 1
2

< π(x) <
x

log x− 3
2

. (6)

The first main result of this paper gives a converse to inequality (1):

Theorem 1. For all x, y ≥ 2 one has

π(x+ y) ≥ 2
3
.[π(x) + π(y)], (7)

with equality only for (x, y) = (5, 5); (3, 7); (7, 3).

Proof. Let f(x) = x
log x− 3

2

. We shall prove that, this function is strictly concave for x > e
7
2 .

Indeed, one has f ′(x) = (log x − 5
2
)/(log x − 3

2
)2, and after some elementary computations, we

get f ′′(x).x.(log x− 3
2
)3 = − log x+ 7

2
< 0 if log x > 7

2
, i.e., x > e

7
2 ≈ 33.11 . . . .

The concavity of f(x) gives the inequality:

f(x) + f(y) ≤ 2f(x+y
2
) for all x, y ≥ e

7
2 . (8)

By the right-hand side of (6) and (8) we can write:

π(x) + π(y) < f(x) + f(y) ≤ x+ y

log(x+y
2
)− 3

2

. (9)

Now, by the left-hand side of (6) one has 3
2
π(x + y) > 3

2
. x+y

log(x+y)− 1
2

, so at a first step, in
attempt to have (7), we want to prove the inequality:

x+ y

log(x+y
2
)− 3

5

<
3

2
.

x+ y

log(x+ y)− 1
2

, (10)
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which is equivalent with

log(x+ y) > 3 log 2 +
9

5
− 1

2
= 3.379 . . . ,

i.e., x+ y > e3.379... ≈ 29.3 . . ..
This is clearly true, if x, y ≥ 67. Therefore, inequality (7) is proved for all x, y ≥ 67.
Now, suppose that x ≥ y and y ≤ 66. Then π(y) ≤ 18, so 2

3
.[π(x)+π(y)] ≤ 2

3
.[π(x)+18] =

2
3
π(x) + 12. We have to prove that 2

3
π(x) + 12 ≤ π(x+ y), or

2π(x) + 36 ≤ 3π(x+ y). (11)

As 3π(x) ≤ 3π(x + y), it will be sufficient to consider the inequality 2π(x) + 36 ≤ 3π(x),
i.e., π(x) ≥ 36. This is true, if x ≥ 151.

Finally, we have to verify the case:

2 ≤ y ≤ x ≤ 150, y ≤ 66. (12)

This can be verified by a computer (for example, a Maple 13 program). This finishes the proof
of Theorem 1.

Corollary 1.

π2(x+ y) ≥ 4

9
.[π(x) + π(y)]2 ≥ 16

9
π(x).π(y), (13)

which is a refinement of inequality (2).

Remark 1. For y ≤ x there is equality in the first inequality of (13) for y = 3, x = 7 and
y = 5, x = 5; while in the second inequality only for y = 5, x = 5.

Indeed, the first inequality follows by (7), while the second one by (a + b)2 ≥ 4a.b, where
a = π(x), b = π(y).

Now, by the weighted arithmetic mean—geometric mean inequality one has:

uα.vβ ≤ α.u+ β.v (14)

for u, v, α, β > 0;α+ β = 1. By letting u = π(x), α = x/(x+ y), v = π(y), β = y/(x+ y), by
(5) and (14) we get

π(x+ y) ≤ 2.π(x)x/(x+y).π(y)y/(x+y) ≤ 2[
x

x+ y
π(x) +

y

x+ y
π(y)],

i.e.,

(x+ y).π(x+ y) ≤ 2.[x.π(x) + y.π(y)]. (15)

In 2001, Panaitopol [2] proved the inequality:

π2(x+ y) ≤ 2.[π2(x) + π2(y)]. (16)

Motivated by these two inequalities, in what follows, we shall prove:
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Theorem 2. For all x, y ≥ 2 one has

π2(x+ y) ≤ 8

7
.[x.π(x) + y.π(y)], (17)

with equality only for (x, y) = (3, 4); (4, 3).

Proof. Let us consider the function g(x) =
x2

log x− 1
2

(x > 0). After elementary computations

we can deduce that

1

2
.g′′(x).

(
log x− 1

2

)2

= log2 x− 3

2
log x+ 1. (18)

Letting log x = t, clearly t2 − 3
2
t+ 1 > 0 (having a negative discriminant), so we get that the

function g(x) is strictly convex.
By the left-hand side of (6) one has

xπ(x) + yπ(y) > g(x) + g(y) ≥ 2g

(
x+ y

2

)
=

(
x+ y

2

)2/(
log

(
x+ y

2

)
− 1

2

)
,

by the convexity of g(x).
By the right-hand side of (6), in order to prove (17), we have first to consider the validity of

inequality

8

7
.

(x+ y)2

4.[log(x+ y)− log 2− 1
2
]
>

(x+ y)2

(log(x+ y)− 3
2
)2
. (19)

Letting log(x+ y) = m, this becomes after elementary computations:

2m2 − 13m+ 7 log2+8 > 0.

Solving this quadraatic inequality, it follows that it is true for m > 2.64 . . ., i.e., x+ y > e2.64... =

14.01 . . ., which is clearly true for x, y ≥ 67.

Now, let x ≥ y and y ≤ 66. As yπ(y) ≥ 2, it is sufficient to consider the inequality:

(π(x) + 18)2 ≤ 8

7
.[xπ(x) + 2]. (20)

This can written as 7π2(x) + 252π(x) + 2268 ≤ 8xπ(x) + 16. Now 8xπ(x) ≥ 12π2(x) by
the elementary inequality

π(x)

x
≤ 2

3
x, (x ≥ 2). (21)

Therefore, we have to consider

5π2(x)− 252π(x)− 2252 ≥ 0,

which is valid for π(x) ≥ 38, i.e., x ≥ 163.
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It remains to verify inequality (17) for

2 ≤ y ≤ x ≤ 163. (22)

This can be verified by a computer, but we can could reduce the numbers of verifications as
follows:

Segal [6] proved in 1962 that inequality (1) holds true for any x, y ≥ 2 and x+ y ≤ 101081.

Thus we can write for the values from (22) that

7π2(x+ y) ≤ 7π2(x) + 7π2(y) + 14π(x).π(y). (23)

Now, if we can prove that 8xπ(x) ≥ 14π2(x), then we would have 8xπ(x) + 8yπ(y) ≥
14π2(x)+14π(y) and inequality (23) would follow on base of 7a2+7b2 > 14ab (i.e., 7(a−b)2 >
0) for a = π(x), b = π(y).

The inequality 8xπ(x) ≥ 14π2(x) is in fact

π(x) ≤ 4

7
x, (24)

which is similar to (21), and is valid for all x ≥ 6.

This is a simple exercise, so (22) can be reduced to

2 ≤ y ≤ x ≤ 5. (25)

For these cases, even a verification by hand can be done. This finishes the proof of (17).

Remark 2. The constants 2/3 and 8/7 in Theorems 1 and 2 are the best possible. In a forthcoming
paper some other inequalities of a new type will be presented.
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