Krassimir T. Atanassov

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 4, Pages 129–139

DOI: 10.7546/nntdm.2021.27.4.129-139

**Full paper (PDF, 205 Kb)**

## Details

### Authors and affiliations

Krassimir T. Atanassov

*Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria*

### Abstract

A short review of formulas for the *n*-th prime number is given and some new formulas are introduced.

### Keywords

- Arithmetic function
- Prime number

### 2020 Mathematics Subject Classification

- 11A25
- 11A41

### References

- Atanassov, K. (1987). New integer functions, related to “
*φ*” and “*σ*” functions. Bulletin of Number Theory and Related Topics, XI(1), 3–26. - Atanassov, K. (1996). Irrational factor: Definition, properties and problems.
*Notes on Number Theory and Discrete Mathematics*, 2(3), 42–44. - Atanassov, K. (2001). A new formula for the
*n*-th prime number. Comptes Rendus de l’Academie Bulgare des Sciences, 54(7), 5–6. - Atanassov, K. (2002). Converse factor: Definition, properties and problems.
*Notes on Number Theory and Discrete Mathematics*, 8(1), 37–38. - Atanassov, K. (2002). Restrictive factor: Definition, properties and problems.
*Notes on Number Theory and Discrete Mathematics*, 8(4), 117–119. - Atanassov, K. (2004). On an arithmetic function. Advanced Studies on Contemporary Mathematics, 8(2), 177–182.
- Atanassov, K. (2009). A remark on an arithmetic function. Part 2.
*Notes on Number Theory and Discrete Mathematics*, 15(3), 21–22. - Atanassov, K. (2009). A remark on an arithmetic function. Part 3.
*Notes on Number Theory and Discrete Mathematics*, 15(4), 23–27. - Atanassov, K. (2013). A formula for the
*n*-th prime number. Comptes Rendus de l’Academie bulgare des Sciences, 66(4), 503–506. - Dimitrov, D. (2019). On the software computation of the formulae for the
*n*-th prime number.*Notes on Number Theory and Discrete Mathematics*, 25(3), 198–206. - Gandhi, J. (1971). Formulae for the nth prime. Proceedings of the Washington State University Conference on Number Theory, Washington State University, Pullman, 96–101.
- Kaddoura, I., & Abdul-Nabi, S. (2012). On Formula to Compute Primes and the
*n*th Prime. Applied Mathematical Sciences, 6(76), 3751–3757. - Mitrinović, D., & Popadic, M. (1978). Inequalities in Number Theory, University of Nis.
- Mitrinović, D., & Sándor, J. (1996). Handbook of Number Theory, Kluwer Academic Publishers.
- Nagell, T. (1950). Introduction to Number Theory, John Wiley & Sons, New York.
- Ribenboim, P. (1995). The New Book of Prime Number Records, Springer, New York.
- Ruiz, S. M. (2005). A new formula for the
*n*th prime. Smarandache Notions Journal, Vol. 15. - Ruiz, S. M. (2000). A functional recurrence to obtain the prime numbers using the Smarandache Prime Function. Smarandache Notions Journal, 11(1-2-3), 56–58.
- Sándor, J., & Atanassov, K. T. (2021). Arithmetic Functions, Nova Science Publishers, Inc.
- Vassilev-Missana, M. (2001). Three formulae for
*n*-th prime and six for*n*-th term of twin primes.*Notes on Number Theory and Discrete Mathematics*, 7(1), 15–20. - Veshenevskiy, L. (1962). A formula for determining of the prime number using its ordinal number. Matematika v Shkole, 5, 74–75 (in Russian).
- Willans, C. (1954). On formulae for the nth prime. The Mathematical Gazette, 48, 413–415.

## Related papers

## Cite this paper

Atanassov, K. T. (2021). Formulas for the *n*-th prime number. *Notes on Number Theory and Discrete Mathematics*, 27(4), 129-139, DOI: 10.7546/nntdm.2021.27.4.129-139.