Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 129–139
DOI: 10.7546/nntdm.2021.27.4.129-139
Full paper (PDF, 205 Kb)
Details
Authors and affiliations
Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria
Abstract
A short review of formulas for the n-th prime number is given and some new formulas are introduced.
Keywords
- Arithmetic function
- Prime number
2020 Mathematics Subject Classification
- 11A25
- 11A41
References
- Atanassov, K. (1987). New integer functions, related to “φ” and “σ” functions. Bulletin of Number Theory and Related Topics, XI(1), 3–26.
- Atanassov, K. (1996). Irrational factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 2(3), 42–44.
- Atanassov, K. (2001). A new formula for the n-th prime number. Comptes Rendus de l’Academie Bulgare des Sciences, 54(7), 5–6.
- Atanassov, K. (2002). Converse factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8(1), 37–38.
- Atanassov, K. (2002). Restrictive factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8(4), 117–119.
- Atanassov, K. (2004). On an arithmetic function. Advanced Studies on Contemporary Mathematics, 8(2), 177–182.
- Atanassov, K. (2009). A remark on an arithmetic function. Part 2. Notes on Number Theory and Discrete Mathematics, 15(3), 21–22.
- Atanassov, K. (2009). A remark on an arithmetic function. Part 3. Notes on Number Theory and Discrete Mathematics, 15(4), 23–27.
- Atanassov, K. (2013). A formula for the n-th prime number. Comptes Rendus de l’Academie bulgare des Sciences, 66(4), 503–506.
- Dimitrov, D. (2019). On the software computation of the formulae for the n-th prime number. Notes on Number Theory and Discrete Mathematics, 25(3), 198–206.
- Gandhi, J. (1971). Formulae for the nth prime. Proceedings of the Washington State University Conference on Number Theory, Washington State University, Pullman, 96–101.
- Kaddoura, I., & Abdul-Nabi, S. (2012). On Formula to Compute Primes and the nth Prime. Applied Mathematical Sciences, 6(76), 3751–3757.
- Mitrinović, D., & Popadic, M. (1978). Inequalities in Number Theory, University of Nis.
- Mitrinović, D., & Sándor, J. (1996). Handbook of Number Theory, Kluwer Academic Publishers.
- Nagell, T. (1950). Introduction to Number Theory, John Wiley & Sons, New York.
- Ribenboim, P. (1995). The New Book of Prime Number Records, Springer, New York.
- Ruiz, S. M. (2005). A new formula for the nth prime. Smarandache Notions Journal, Vol. 15.
- Ruiz, S. M. (2000). A functional recurrence to obtain the prime numbers using the Smarandache Prime Function. Smarandache Notions Journal, 11(1-2-3), 56–58.
- Sándor, J., & Atanassov, K. T. (2021). Arithmetic Functions, Nova Science Publishers, Inc.
- Vassilev-Missana, M. (2001). Three formulae for n-th prime and six for n-th term of twin primes. Notes on Number Theory and Discrete Mathematics, 7(1), 15–20.
- Veshenevskiy, L. (1962). A formula for determining of the prime number using its ordinal number. Matematika v Shkole, 5, 74–75 (in Russian).
- Willans, C. (1954). On formulae for the nth prime. The Mathematical Gazette, 48, 413–415.
Related papers
Cite this paper
Atanassov, K. T. (2021). Formulas for the n-th prime number. Notes on Number Theory and Discrete Mathematics, 27(4), 129-139, DOI: 10.7546/nntdm.2021.27.4.129-139.