Formulas for the n-th prime number

Krassimir T. Atanassov
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 4, Pages 129–139
DOI: 10.7546/nntdm.2021.27.4.129-139
Full paper (PDF, 205 Kb)

Details

Authors and affiliations

Krassimir T. Atanassov
Department of Bioinformatics and Mathematical Modelling
IBPhBME – Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 105, Sofia-1113, Bulgaria

Abstract

A short review of formulas for the n-th prime number is given and some new formulas are introduced.

Keywords

  • Arithmetic function
  • Prime number

2020 Mathematics Subject Classification

  • 11A25
  • 11A41

References

  1. Atanassov, K. (1987). New integer functions, related to “φ” and “σ” functions. Bulletin of Number Theory and Related Topics, XI(1), 3–26.
  2. Atanassov, K. (1996). Irrational factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 2(3), 42–44.
  3. Atanassov, K. (2001). A new formula for the n-th prime number. Comptes Rendus de l’Academie Bulgare des Sciences, 54(7), 5–6.
  4. Atanassov, K. (2002). Converse factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8(1), 37–38.
  5. Atanassov, K. (2002). Restrictive factor: Definition, properties and problems. Notes on Number Theory and Discrete Mathematics, 8(4), 117–119.
  6. Atanassov, K. (2004). On an arithmetic function. Advanced Studies on Contemporary Mathematics, 8(2), 177–182.
  7. Atanassov, K. (2009). A remark on an arithmetic function. Part 2. Notes on Number Theory and Discrete Mathematics, 15(3), 21–22.
  8. Atanassov, K. (2009). A remark on an arithmetic function. Part 3. Notes on Number Theory and Discrete Mathematics, 15(4), 23–27.
  9. Atanassov, K. (2013). A formula for the n-th prime number. Comptes Rendus de l’Academie bulgare des Sciences, 66(4), 503–506.
  10. Dimitrov, D. (2019). On the software computation of the formulae for the n-th prime number. Notes on Number Theory and Discrete Mathematics, 25(3), 198–206.
  11. Gandhi, J. (1971). Formulae for the nth prime. Proceedings of the Washington State University Conference on Number Theory, Washington State University, Pullman, 96–101.
  12. Kaddoura, I., & Abdul-Nabi, S. (2012). On Formula to Compute Primes and the nth Prime. Applied Mathematical Sciences, 6(76), 3751–3757.
  13. Mitrinović, D., & Popadic, M. (1978). Inequalities in Number Theory, University of Nis.
  14. Mitrinović, D., & Sándor, J. (1996). Handbook of Number Theory, Kluwer Academic Publishers.
  15. Nagell, T. (1950). Introduction to Number Theory, John Wiley & Sons, New York.
  16. Ribenboim, P. (1995). The New Book of Prime Number Records, Springer, New York.
  17. Ruiz, S. M. (2005). A new formula for the nth prime. Smarandache Notions Journal, Vol. 15.
  18. Ruiz, S. M. (2000). A functional recurrence to obtain the prime numbers using the Smarandache Prime Function. Smarandache Notions Journal, 11(1-2-3), 56–58.
  19. Sándor, J., & Atanassov, K. T. (2021). Arithmetic Functions, Nova Science Publishers, Inc.
  20. Vassilev-Missana, M. (2001). Three formulae for n-th prime and six for n-th term of twin primes. Notes on Number Theory and Discrete Mathematics, 7(1), 15–20.
  21. Veshenevskiy, L. (1962). A formula for determining of the prime number using its ordinal number. Matematika v Shkole, 5, 74–75 (in Russian).
  22. Willans, C. (1954). On formulae for the nth prime. The Mathematical Gazette, 48, 413–415.

Related papers

Cite this paper

Atanassov, K. T. (2021). Formulas for the n-th prime number. Notes on Number Theory and Discrete Mathematics, 27(4), 129-139, DOI: 10.7546/nntdm.2021.27.4.129-139.

Comments are closed.