De Moivre-type identities for the Jacobsthal numbers

Mücahit Akbiyik and Seda Yamaç Akbiyik
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 95–103
DOI: 10.7546/nntdm.2021.27.3.95-103
Full paper (PDF, 157 Kb)

Details

Authors and affiliations

Mücahit Akbiyik
Department of Mathematics, Beykent University
Büyükçekmece / Istanbul, Turkey

Seda Yamaç Akbiyik
Department of Computer Engineering, Istanbul Gelisim University
Avcılar / Istanbul, Turkey

Abstract

The main aim of this study is to obtain De Moivre-type identities for Jacobsthal numbers. Also, this paper presents a method for constructing the second order Jacobsthal and Jacobsthal third-order numbers and the third-order Jacobsthal and Jacobsthal–Lucas numbers. Moreover, we give some interesting identities, such as Binet’s formulas for some specific third-order Jacobsthal numbers that we derive from De Moivre-type identities.

Keywords

  • De Moivre-type identity
  • Jacobsthal numbers
  • Binet’s formula

2020 Mathematics Subject Classification

  • 11B39
  • 11B83

References

  1. Basin, S. L. (ed.) (1963). Elementary problems and solutions. The Fibonacci Quarterly, 1(2), 85.
  2. Basin, S. L. (ed.) (1963). Elementary problems and solutions. The Fibonacci Quarterly, 1(4), 77.
  3. Bruce, I. (1984). A modified Tribonacci sequence. The Fibonacci Quarterly, 22(3), 244–246.
  4. Cerda-Morales, G. (2017). Identities for the third-order Jacobsthal quaternions. Advances in Applied Clifford Algebras, 27, 1043–1053.
  5. Cerda-Morales, G. (2019). On the third-order Jacobsthal and third-order Jacobsthal–Lucas sequences and their matrix representation. Mediterranean Journal of Mathematics, 16, Article No. 32.
  6. Cerda-Morales, G. (2020). A note on modified third-order Jacobsthal numbers. Proyecciones Journal of Mathematics, 39(2), 409–420.
  7. Cook, C. K., & Bacon, M. R. (2013). Some identities for Jacobsthal and Jacobsthal–Lucas numbers satisfying higher order recurrence relations. Annales Mathematicae et Informaticae, 41, 27–39.
  8. Horadam, A. F. (1996). Jacobsthal representation numbers. The Fibonacci Quarterly, 34, 40–54.
  9. Horadam, A. F. (1988). Jacobsthal and Pell curves. The Fibonacci Quarterly, 26, 79–83.
  10. Lin, P.-Y. (1988). De Moivre-type identities for the Tribonacci numbers. The Fibonacci Quarterly, 26(2), 131–134.
  11. Lin, P.-Y. (1991). De Moivre-type identities for the Tetranacci numbers. In: Bergum, G. E., Philippou, A. N., & Horadam, A. F. (eds.) Applications of Fibonacci Numbers. Springer, Dordrecht. DOI: 10.1007/978-94-011-3586-324.
  12. Sloane, N. J. A. (2021). On-line Encyclopedia of Integer Sequences. Available online at: http://oeis.org/.

Related papers

Cite this paper

Akbiyik, M., & Akbiyik, S. Y. (2021). De Moivre-type identities for the Jacobsthal numbers. Notes on Number Theory and Discrete Mathematics, 27(3), 95-103, DOI: 10.7546/nntdm.2021.27.3.95-103.

Comments are closed.