Mücahit Akbiyik and Seda Yamaç Akbiyik
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 3, Pages 95–103
DOI: 10.7546/nntdm.2021.27.3.95-103
Full paper (PDF, 157 Kb)
Details
Authors and affiliations
Mücahit Akbiyik
Department of Mathematics, Beykent University
Büyükçekmece / Istanbul, Turkey
Seda Yamaç Akbiyik
Department of Computer Engineering, Istanbul Gelisim University
Avcılar / Istanbul, Turkey
Abstract
The main aim of this study is to obtain De Moivre-type identities for Jacobsthal numbers. Also, this paper presents a method for constructing the second order Jacobsthal and Jacobsthal third-order numbers and the third-order Jacobsthal and Jacobsthal–Lucas numbers. Moreover, we give some interesting identities, such as Binet’s formulas for some specific third-order Jacobsthal numbers that we derive from De Moivre-type identities.
Keywords
- De Moivre-type identity
- Jacobsthal numbers
- Binet’s formula
2020 Mathematics Subject Classification
- 11B39
- 11B83
References
- Basin, S. L. (ed.) (1963). Elementary problems and solutions. The Fibonacci Quarterly, 1(2), 85.
- Basin, S. L. (ed.) (1963). Elementary problems and solutions. The Fibonacci Quarterly, 1(4), 77.
- Bruce, I. (1984). A modified Tribonacci sequence. The Fibonacci Quarterly, 22(3), 244–246.
- Cerda-Morales, G. (2017). Identities for the third-order Jacobsthal quaternions. Advances in Applied Clifford Algebras, 27, 1043–1053.
- Cerda-Morales, G. (2019). On the third-order Jacobsthal and third-order Jacobsthal–Lucas sequences and their matrix representation. Mediterranean Journal of Mathematics, 16, Article No. 32.
- Cerda-Morales, G. (2020). A note on modified third-order Jacobsthal numbers. Proyecciones Journal of Mathematics, 39(2), 409–420.
- Cook, C. K., & Bacon, M. R. (2013). Some identities for Jacobsthal and Jacobsthal–Lucas numbers satisfying higher order recurrence relations. Annales Mathematicae et Informaticae, 41, 27–39.
- Horadam, A. F. (1996). Jacobsthal representation numbers. The Fibonacci Quarterly, 34, 40–54.
- Horadam, A. F. (1988). Jacobsthal and Pell curves. The Fibonacci Quarterly, 26, 79–83.
- Lin, P.-Y. (1988). De Moivre-type identities for the Tribonacci numbers. The Fibonacci Quarterly, 26(2), 131–134.
- Lin, P.-Y. (1991). De Moivre-type identities for the Tetranacci numbers. In: Bergum, G. E., Philippou, A. N., & Horadam, A. F. (eds.) Applications of Fibonacci Numbers. Springer, Dordrecht. DOI: 10.1007/978-94-011-3586-324.
- Sloane, N. J. A. (2021). On-line Encyclopedia of Integer Sequences. Available online at: http://oeis.org/.
Related papers
Cite this paper
Akbiyik, M., & Akbiyik, S. Y. (2021). De Moivre-type identities for the Jacobsthal numbers. Notes on Number Theory and Discrete Mathematics, 27(3), 95-103, DOI: 10.7546/nntdm.2021.27.3.95-103.