Halim Özdemir, Sinan Karakaya and Tuğba Petik

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 27, 2021, Number 3, Pages 63—72

DOI: 10.7546/nntdm.2021.27.3.63-72

**Download full paper: PDF, 209 Kb**

## Details

### Authors and affiliations

Halim Özdemir

*Department of Mathematics, University of Sakarya,
54187, Serdivan, Sakarya, Turkey*

Sinan Karakaya

*Department of Mathematics, University of Sakarya,
54187, Serdivan, Sakarya, Turkey*

Tuğba Petik

*Department of Mathematics, University of Sakarya,
54187, Serdivan, Sakarya, Turkey
*

### Abstract

In this work, it is presented a procedure to find some 3 × 3 dimensional matrices whose integer powers can be characterized by generalized Fibonacci numbers. Moreover, some numerical examples are given to exemplify the procedure established.

### Keywords

- Fibonacci numbers
- Generalized Fibonacci numbers
- Fibonacci
*Q*-matrix - Eigenvalue
- Eigenvector
- Matrix equation

### 2020 Mathematics Subject Classification

- 11B39
- 15A24

### References

- Cerda-Morales, G. (2013). On generalized Fibonacci and Lucas numbers by matrix methods. Hacettepe Journal of Mathematics and Statistics, 42(2), 173–179.
- Demirtürk, B. (2010). Fibonacci and Lucas sums by matrix methods. International Mathematical Forum, 5(3), 99–107.
- Gould, H. W. (1981). A history of the Fibonacci
*Q*-matrix and a

higher-dimensional problem. Fibonacci Quarterly, 19(3), 250–257. - Gupta, V. K., Panwar, Y. K., & Sikhwal, O. (2012). Generalized Fibonacci

sequences, Theoretical Mathematics & Applications, 2(2), 115–124. - Kalman, D., & Mena, R. (2003). The Fibonacci numbers – exposed. Mathematics Magazine, 76, 167–181.
- Karakaya, S., Özdemir, H., & Petik, T. (2018). 3 × 3 Dimensional special

matrices associated with Fibonacci and Lucas numbers. Sakarya University Journal of Science, 22(6), 1917–1922. - Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, Wiley Interscience.
- Omotheinwa, T. O., & Ramon, S. O. (2013). Fibonacci numbers and golden ratio in mathematics and science. International Journal of Computer and Information Technology, 2(4), 630–638.
- Ribenboim, P. (2000). My Numbers, My Friends. Springer-Verlag New York, Inc.
- Şiar, Z., & Keskin, R. (2013). Some new identities concerning generalized Fibonacci and Lucas numbers. Hacettepe Journal of Mathematics and Statistics, 42(3), 211–222.
- Vajda, S. (1989). Fibonacci and Lucas Numbers, and the Golden Section. Theory and Applications. Ellis Horwood Limited.
- Vorobiev, N. N. (2002). Fibonacci Numbers, Birkhäuser, Basel, (Russian original 1950).
- Yordzhev, K. (2014). Factor-set of binary matrices and Fibonacci numbers. Applied Mathematics and Computation, 236, 235–238.

## Related papers

## Cite this paper

Özdemir, H., Karakaya S., & Petik T. (2021). On some 3 × 3 dimensional matrices associated with generalized Fibonacci numbers. Notes on Number Theory and Discrete Mathematics, 27(3), 63-72, doi: 10.7546/nntdm.2021.27.3.63-72.