Salah Eddine Rihane, Chefiath Awero Adegbindin and Alain Togbé
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 2, Pages 129–136
DOI: 10.7546/nntdm.2021.27.2.129-136
Full paper (PDF, 204 Kb)
Details
Authors and affiliations
Salah Eddine Rihane ![]()
Department of Mathematics and Computer Science
Abdelhafid Boussouf University
Mila 43000, Algeria
Chefiath Awero Adegbindin ![]()
Institut de Mathematiques et de Sciences Physiques
Dangbo, Benin
Alain Togbé ![]()
Department of Mathematics, Statistics, and Computer Science
Purdue University Northwest
1401 S, U.S. 421, Westville IN 46391, United States
Abstract
For an integer
, let
be the
-generalized Lucas sequence which starts with
(
terms) and each term afterwards is the sum of the
preceding terms. In this paper, we look the
-generalized Lucas numbers of the form
i.e. we study the Diophantine equation
in positive integers
with
.
Keywords
- k-generalized Lucas numbers
- Linear form in logarithms
- Reduction method
2020 Mathematics Subject Classification
- 11B39
- 11J86
References
- Adegbindin, C., Luca, F., & Togbé, A. (2019). Lucas numbers as sums of two repdigits. Lithuanian Mathematical Journal, 59(3), 295–304.
- Baker, A., & Davenport, H. (1969). The equations 3x2 − 2 = y 2 and 8x2 − 7 = z2. Quarterly Journal of Mathematics, Oxford Series (2), 20, 129–137.
- Bravo, J. J., & Luca, F. (2012). Powers of two in generalized Fibonacci sequences. Revista Colombiana de Matemáticas, 46, 67–79.
- Bravo, J. J., Gómez, C. A., & Luca, F. (2016). Powers of two as sums of two k-Fibonacci numbers. Miskolc Mathematical Notes, 17, 85–100.
- Bravo, J. J., & Luca, F. (2014). Repdigits in k-Lucas sequences. Proceedings of the Indian Academy of Sciences: Mathematical Sciences, 124(2), 141–154.
- Dujella, A., & Pethő, A. (1998). A generalization of a theorem of Baker and Davenport. Quarterly Journal of Mathematics, Oxford Series (2), 49(195), 291–306.
- Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II. Izvestiya: Mathematics, 64(6), 1217–1269.
- Mile, E. P. Jr. (1960). Generalized Fibonacci numbers and associated matrices. American Mathematical Monthly, 67, 745–752.
- Miller, M. D. (1971). Mathematical notes: on generalized Fibonacci number. American Mathematical Monthly, 78, 1108–1109.
- Pethő, A. (1982). Perfect powers in second order linear recurrences. Journal of Number Theory , 15, 5–13.
- Rihane, S. E., Faye, B., Luca, F., & Togbé, A. (2020). Powers of two in generalized Lucas sequences. The Fibonacci Quarterly, 58(3), 254–260.
- Wolfram, D. A. (1998). Solving generalized Fibonacci recurrences. The Fibonacci Quarterly, 36(2), 129–145.
Related papers
Cite this paper
Rihane, S. E., Adegbindin, C. A., & Togbé, A. (2021). Generalized Lucas numbers of the form 3 × 2m. Notes on Number Theory and Discrete Mathematics, 27(2), 129-136, DOI: 10.7546/nntdm.2021.27.2.129-136.
