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Abstract: For an integer £ > 2, let (Lﬁ{“))n be the k-generalized Lucas sequence which starts
with 0,...,0,2,1 (k terms) and each term afterwards is the sum of the &k preceding terms. In this
paper, we look the k-generalized Lucas numbers of the form 3 x 2™ i.e. we study the Diophantine
equation L =3 x2min positive integers n, k, m with k > 2.
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1 Introduction
Let k£ > 2 be an integer. We consider a generalization of Lucas sequence called the k-generalized
Lucas sequence L' defined as

O =W LW 4o L™ foralln > 2, (1)
with the initial conditions L(_k()k_z) = L(_k()k_?)) = Lfl) =0, Lék) = 2 and Lgk) =1.1Ifk =2,

we obtain the classical Lucas sequence
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Ly=2, Ih=1, and L,=0L, 1+ L,_o for n>2.
(Lp)n>0 =1{2,1,3,4,7,11,18,29,47, 76,123,199, 322, 521, 843, 1364, . . .}.

If £ = 3, then the 3-Lucas sequence is

(L®),=_1 = {0,2,1,3,6,10, 19,35, 64, 118, 217, 399, 734, 1350, 2483, 4567, .. .}..

n

If £ = 4, then the 4-Lucas sequence is

(L9),5_s = {0,0,2,1,3,6,12,22, 43,83, 160, 308, 594, 1145, 2207, 4254, 8200, . . .}.

n

It is known that if 2 < n < k, then
L®) =3 x on=2, )

see Lemma 2 in [S5]. This raises the following natural question: are there any positive integers
n, m, k such that
LK) =3 x 2m? (3)

The aim of this paper is to give an answer to this problem by proving the following result.
Theorem 1.1. The Diophantine equation (3) has no solution if n > k + 1.

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of algebraic numbers
and a reduction algorithm originally introduced by Baker and Davenport [2]. Here, we use a
version due to Dujella and Pethd in [6, Lemma 5(a)].

2 The tools

2.1 Linear forms in logarithms

For any non-zero algebraic number 7 of degree d over (Q, whose minimal polynomial over Z is
a]I7_, (X —n1¥), we denote by

d
1 .
h(n) = 7 (log la| + E log max (1, ‘,7(1)’))

j=1

the usual absolute logarithmic height of 7. In particular, if » = p/q is a rational number with
ged(p,q) = 1and ¢ > 0, then h(n) = logmax{|p|, ¢}. The following properties of the function
absolute logarithmic height /(), which will be used in the next sections without special reference,
are also known:

h(n+v) < h(n)+h(y)+log2, 4)
(™) < h(n) + h(v), Q)
h(n®) = |s|h(n) (s€Z). (6)

With this notation, Matveev proved the following theorem (see [7]).
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Theorem 2.1. Let 1y, ...,n, be real algebraic numbers and let by, ..., b, be nonzero rational
integer numbers. Let dg be the degree of the number field Q(ny, . .., ns) over Q and let A; be a
positive real number satisfying

A; = max{dgh(n),|logn|,0.16} for j=1,...,s.
Assume that B > max{|by|, ..., |bs|}. Ifn® ---nbs — 1 #0, then

b — 1] > exp(—1.4-30°73 - %% . d% (1 4+ log dg) (1 4+ log B)A; - - - Ay).

2.2 Reduction algorithm

The following lemma can be found in [1].

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction of the
irrational v such that ¢ > 6 M, and let A, C, ;x be some real numbers with A > 0 and C > 1. Let

e = ||pqgl| — M - [|vqll,

where || - || denotes the distance from the nearest integer. If ¢ > 0, then there is no solution of the
inequality
O<uy—v+p<AC™

in positive integers u, v and w with

log(Aq/e) '

u< M and w > log C

2.3 Properties of the k-generalized Lucas sequence

In this subsection, we recall some facts and properties of these sequences which will be used later.
We know that the characteristic polynomial of the k-generalized Lucas numbers (L%k))n,
namely

Up(x) =af —2F 1 - — 1,

is irreducible over Q[x] and has just one root outside the unit circle; the other roots are strictly
inside the unit circle (see, for example, [8,9, 12]). We denote by a := «(k) the single root, which
is located between 2(1 — 27%) and 2 (see [12]). We label its roots by as, . . . , ag with a := a;. To
simplify the notation, in general, we omit the dependence on k of a.
For an integer s > 2, we define the function
z—1
L&) = o e e =

Now, we are ready to recall in the following lemmas some properties of the sequence

(7

(L%k))nz,(k,g), which will be used for the proof of Theorem 1.1.
Lemma 2.3. [5, p. 144]
(a) Foralln > 1 and k > 2, we have

"t < L) < 9am, (8)
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(b) The following ”Binet-like” formula holds for all n > —(k — 2):

LP =3 "(20; — 1) fir(as)ar ™. )
i=1
(c) Foralln > —(k —2), we have
3
IL¥) — (20 — 1) fy(@)a" | < > (10)
Lemma 2.4. [11] For every positive integer n > 2, we have
Lk <3.9772, (11)

Moreover, if n > k + 2, then the above inequality is strict.

Lemma 2.5. [4, pp. 89-90] For k > 2, let o be the dominant root of Vi (x), and consider the
function fs(x) defined in (7). Then:

(i) The inequalities 1/2 < fi(a) < 3/4 and !fk(a(i))| <1, for2 <i <k hold. So the
number fi(«) is not an algebraic integer.

(ii) The logarithmic height function satisfies h( fi(a)) < 3log k.

3 The proof of the main result

3.1 An inequality for n and m in terms of k

From now on, we assume that n > k£ + 1. By Lemma 2.4 and Equation (3) we get
3.-2m=L® <3.2"2

so we deduce that m < n — 1. Thus, we may suppose that n > 3 and m > 2.
Now, we prove the following lemma.

Lemma 3.1. If (n,k,m) is a nontrivial solution in integers of Equation (3) with k > 2 and
n > k + 1, then the inequalities

m <n <4 x 10"k log® k (12)
hold.
Proof. Combining (3) with (10), one gets
3% 2™ — (20 — 1) fy(a)a™ | < ; (13)

Notice that« > 1,28 > k+1and 28 > (k+ 1)(2— (2 —27%*1) > (k+ 1)(2 — ).
Thus, (2a — 1) fr.(a)a™ ! is positive. Now, we divide both sides of the above inequality by
(2 — 1) fr(a)a™! to obtain the following inequality

3270 D (20— 1) i(a)" — 1] < ai

n—1"

(14)

where we used the facts 2+ (k + 1)(a —2) < 2and 1/(2a — 1) < 1/2.
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In order to prove inequalities (12), we will apply Theorem 2.1. To this end, we take

t:=3, m:=2 mi=a, n:=32a—-1)fa))",

and
by:=m, by:=—(n—-1), by:=1.
We put
A:=3-2"-a V. (20— 1) fr(a) =1 (15)
and inequality (14) becomes
A< (16)

For these choices, the field K := Q(«) contains 7,12, 73 and has dx = k. Since h(7;) = log 2
and h(n2) = (log @) /k < (log 2)/k, it follows that

max{kh(n),|logm|,0.16} = klog2 := A,

and
max{kh(n), logna| ,0.16} = log 2 := A,.

On the other hand, we use the estimate (ii) of Lemma 2.5 and the properties (5), (6) to deduce
that for all £ > 2

< h(2a—1) + h(f(e)) + h(3)

< log3+ 3logk + log 3

< Tlogk,

h(ns)

so we get
max{kh(ns),|logns|,0.16} = Tklogk := A;.

Asm <n—1,wecantake B :=n — 1.
Before applying Theorem 2.1, it remains us to prove that A # (0. Assume the contrary, i.e.,
A = 0, this imply that
g . om _ (2a0 — 1)( — 1) N
2+ (k+1)(a—2)
If we conjugate the above relation by the automorphism of Galois o : & — «a; (i > 1) and then

n—1

taking absolute values, we get

mo_ | Qo —1D( —1) 4
S S D =2

But the above relation is not possible since its left-hand side is greater than or equal to 12, while
its right-hand side is smaller than 6/(k — 1) < 8 as ;| < 1 and
2+k+1)(;—2)>k+1)|a;—2|—2>k—1.
Thus, A # 0. Therefore, applying Theorem 2.1 to get a lower bound for |A| and comparing this
with inequality (16), we get
(n —1)loga —log3 < 4.82 x 10" k* log k(1 + log k)(1 + log(n — 1)).
Since 1 + logk < 2logk, 1 +log(n — 1) < 2log(n — 1) and 1/loga < 2 for k > 3 and n > 4,

we conclude that
n—1

— <4 x10%2k*log’ k. 17
log(n—1)< x 102k log? k (17)
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We know that the function = — x/log z is increasing for all = > e, so it is easy to check that
x
the inequality an < Aimplies © < 2Alog A, whenever A > 3.
ogx

Thus, taking A := 4x 10'2k* log? k, inequality (17) and as 3044 log k+2log log k < 47 log k,
for all £ > 3, we get

n—1 < 2(4x102k*log® k)log(4 x 10"2k*log® k)
< (8 x 10"%Kk*log” k)(30 + 4log k + 2loglog k)
< 4 x10"k*log? k. O

3.2 Thecase2 <k <170

In this subsection, we study the cases when k € [2, 170]. We prove the following lemma.
Lemma 3.2. The Diophantine equation (3) has no solution when k € [2,170] and n > k + 1.
Proof. Let

200 — 1
['=mlog2— (n—1)loga — log (M). (18)
Then e!' — 1 = A, where A is defined by (15). Therefore, (16) can be rewritten as
3
[ef =1 < == (19)

Notice that I' # 0 since A # 0, so we distinguish the following two cases.

e First, if ' > 0, then e’ — 1 > 0. Using the fact that z < e* — 1 for all x € R, inequality
(19) gives

0<I'< T
an”
Replacing I' in the above inequality by its formula (18), dividing both sides of the resulting
inequality by log « and using the fact that 1/log o < 2 for all £ > 2, we get

0<m (log2) g (1 _ log((20 — l)f’“<o‘)/3)) <6-a-™ V. (20

log a log «

Putting
~log2 pi—1 log((2ac — 1) fr()/3)

" loga’ log a

the above inequality (20) yields
0<my—n+pu<AC~ D, 21)

It is clear that -y is an irrational number because o > 1 is a unit in Ok, the ring of integers
of K. So «a and 2 are multiplicatively independent.

For each k € [2,170], we find a good approximation of « and a convergent py/q, of the
continued fraction of + such that ¢, > 6M, where M = |4 x 10"k*log® k|, which is an
upper bound on m from Lemma 12. After doing this, we use Lemma 2.2 to Inequality (20).
A computer search with Mathematica revealed that the maximum value of
|log(Agq/e)/log C| over all k € [2,170] is 175, which according to Lemma 2.2, is an
upper bound on n — 1. Hence, we deduce that the possible solutions (n, k, m) of Equation
(3) for which k € [2,170] and T > 0 have n < 176, therefore m < 175, since m < n.

134



e Now, we consider the case I' < 0. It is easy to see that 2/a™! < 1/2 holds for all k > 2
and n > 3. Thus, inequality (19) implies ‘er — 1‘ < 1/2 and therefore el < 2. AsT < 0,

we get 0 < || < elfl —1 = ¢l ‘er — 1‘ < Similarly, as the case when I' > 0, we

an—l'
get
0<(n—1)y—m+p< AC~"=Y, (22)
where 1 log((20 = 1)fu(0)/3)
og o og((2a — e’
7 log2’ a log 2 ’ ’ “

In this case, we also took M := |4 x 10"k*log® k| which is an upper bound of n — 1
by Lemma 3.1, and we applied Lemma 2.2 to inequality (22). In this case, with the help
of Mathematica, we found that the maximum value of |log(Agq/e)/logC| is 174. Thus,
the possible solutions (n, k, m) of Equation (3) in the range & € [2,170] and I" < 0 give
n <175, som < 174.

Finally, using Mathematica we compared L% and 3 x 2™ for the range 3 < n < 175 and
2 < m < 174, with m < n and found that Equation (3) has no solution in this range. O]

3.3 Thecasek > 170

In this subsection, we analyze the case £ > 170.
Lemma 3.3. The Diophantine equation (3) has no solution when k > 170 and n > k + 1.

Proof. For k > 170, we have n < 4 x 10"k*log® k < 2¥/2.In [5, p. 150], it was proved that

)
(2a — 1) fe(a)a" 1 =3.2""2 +3.2" 1+ TR

where " T
2 2"
Thus, from the above equality and (13), we get
)
3-2m —3.2"72 = |3.2™ — (2a — 1) fr(a)a" 1 +3-2"71p + 3 +nd

3k - on 2n+1 2n+3/€
92k + 2k/2 + 923k/2

< 34
2
For k > 170, we get 4k/2F < 1/2%/2,8/(3 - 2¥/2) < 3/2%/2 and 32k /(3 - 2%/2) < 1/2%/2. Thus,

we obtain
n—2

]3-2m—3-2”—2|<18-22W.

Asn >k + 1, we have 1/2"~! < 1/2%/2 and factoring out 3 - 2"~2 in the right-hand side of the

above inequality, we get
6
Moreover, since m < n, we have that m — n + 2 < 1, then it follows from (23) that

1 6
- __ om—n+2 o
5 <1-2 < STIEk

|2m=+2 1| < (23)
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So, 2k/2 < 12, which is impossible as £ > 170. Hence, we have shown that there are no
solutions (n, k, m) to Equation (3) with £ > 170. O

Thus, this completes the proof of Theorem 1.1.

4 Conclusion

In this paper, we prove that there are no positive integers m, n, k such that a k-generalized Lucas
number has the form 3 x 2™ for n > k + 1, i.e., the Diophantine equation L = 3 x 2™ has no
solution in positive integers n, k,m with k > 2and n > k + 1.
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