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1 Department of Mathematics and Computer Science
Abdelhafid Boussouf University

Mila 43000, Algeria
e-mail: salahrihane@hotmail.fr
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Abstract: For an integer k ≥ 2, let (L
(k)
n )n be the k-generalized Lucas sequence which starts

with 0, . . . , 0, 2, 1 (k terms) and each term afterwards is the sum of the k preceding terms. In this
paper, we look the k-generalized Lucas numbers of the form 3×2m i.e. we study the Diophantine
equation L(k)

n = 3× 2m in positive integers n, k,m with k ≥ 2.
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1 Introduction

Let k ≥ 2 be an integer. We consider a generalization of Lucas sequence called the k-generalized
Lucas sequence L(k)

n defined as

L(k)
n = L

(k)
n−1 + L

(k)
n−2 + · · ·+ L

(k)
n−k for all n ≥ 2, (1)

with the initial conditions L(k)
−(k−2) = L

(k)
−(k−3) = · · ·L(k)

−1 = 0, L(k)
0 = 2 and L(k)

1 = 1. If k = 2,
we obtain the classical Lucas sequence
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L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2.

(Ln)n≥0 = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . .}.

If k = 3, then the 3-Lucas sequence is

(L(3)
n )n≥−1 = {0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, . . .}.

If k = 4, then the 4-Lucas sequence is

(L(4)
n )n≥−2 = {0, 0, 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, . . .}.

It is known that if 2 ≤ n ≤ k, then
L(k)
n = 3× 2n−2, (2)

see Lemma 2 in [5]. This raises the following natural question: are there any positive integers
n,m, k such that

L(k)
n = 3× 2m? (3)

The aim of this paper is to give an answer to this problem by proving the following result.

Theorem 1.1. The Diophantine equation (3) has no solution if n ≥ k + 1.

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of algebraic numbers
and a reduction algorithm originally introduced by Baker and Davenport [2]. Here, we use a
version due to Dujella and Pethő in [6, Lemma 5(a)].

2 The tools

2.1 Linear forms in logarithms

For any non-zero algebraic number η of degree d over Q, whose minimal polynomial over Z is
a
∏d

j=1

(
X − η(j)

)
, we denote by

h(η) =
1

d

(
log |a|+

d∑
j=1

log max
(
1, |η(j)|

))

the usual absolute logarithmic height of η. In particular, if η = p/q is a rational number with
gcd(p, q) = 1 and q > 0, then h(η) = log max{|p|, q}. The following properties of the function
absolute logarithmic height h(), which will be used in the next sections without special reference,
are also known:

h(η ± γ) ≤ h(η) + h(γ) + log 2, (4)

h(ηγ±1) ≤ h(η) + h(γ), (5)

h(ηs) = |s|h(η) (s ∈ Z). (6)

With this notation, Matveev proved the following theorem (see [7]).
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Theorem 2.1. Let η1, . . . , ηs be real algebraic numbers and let b1, . . . , bs be nonzero rational
integer numbers. Let dK be the degree of the number field Q(η1, . . . , ηs) over Q and let Aj be a
positive real number satisfying

Aj = max{dKh(η), | log η|, 0.16} for j = 1, . . . , s.

Assume that B ≥ max{|b1|, . . . , |bs|}. If ηb11 · · · ηbss − 1 6= 0, then

|ηb11 · · · ηbss − 1| ≥ exp(−1.4 · 30s+3 · s4.5 · d2
K(1 + log dK)(1 + logB)A1 · · ·As).

2.2 Reduction algorithm

The following lemma can be found in [1].

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction of the
irrational γ such that q > 6M , and let A,C, µ be some real numbers with A > 0 and C > 1. Let

ε = ||µq|| −M · ||γq||,

where || · || denotes the distance from the nearest integer. If ε > 0, then there is no solution of the
inequality

0 < uγ − v + µ < AC−w

in positive integers u, v and w with

u ≤M and w ≥ log(Aq/ε)

logC
.

2.3 Properties of the k-generalized Lucas sequence

In this subsection, we recall some facts and properties of these sequences which will be used later.
We know that the characteristic polynomial of the k-generalized Lucas numbers (L

(k)
n )n,

namely
Ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle; the other roots are strictly
inside the unit circle (see, for example, [8,9,12]). We denote by α := α(k) the single root, which
is located between 2(1− 2−k) and 2 (see [12]). We label its roots by α1, . . . , αk with α := α1. To
simplify the notation, in general, we omit the dependence on k of α.

For an integer s ≥ 2, we define the function

fs(x) =
x− 1

2 + (s+ 1)(x− 2)
. (7)

Now, we are ready to recall in the following lemmas some properties of the sequence
(L

(k)
n )n≥−(k−2), which will be used for the proof of Theorem 1.1.

Lemma 2.3. [5, p. 144]

(a) For all n ≥ 1 and k ≥ 2, we have

αn−1 ≤ L(k)
n ≤ 2αn. (8)
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(b) The following ”Binet-like” formula holds for all n ≥ −(k − 2):

L(k)
n =

k∑
i=1

(2αi − 1)fk(αi)α
n−1
i . (9)

(c) For all n ≥ −(k − 2), we have∣∣L(k)
n − (2α− 1)fk(α)αn−1

∣∣ < 3

2
. (10)

Lemma 2.4. [11] For every positive integer n ≥ 2, we have

L(k)
n ≤ 3 · 2n−2. (11)

Moreover, if n ≥ k + 2, then the above inequality is strict.

Lemma 2.5. [4, pp. 89–90] For k ≥ 2, let α be the dominant root of Ψk(x), and consider the
function fs(x) defined in (7). Then:

(i) The inequalities 1/2 < fk(α) < 3/4 and
∣∣fk(α(i))

∣∣ < 1, for 2 ≤ i ≤ k hold. So the
number fk(α) is not an algebraic integer.

(ii) The logarithmic height function satisfies h(fk(α)) < 3 log k.

3 The proof of the main result

3.1 An inequality for n and m in terms of k

From now on, we assume that n ≥ k + 1. By Lemma 2.4 and Equation (3) we get

3 · 2m = L(k)
n ≤ 3 · 2n−2,

so we deduce that m < n− 1. Thus, we may suppose that n ≥ 3 and m ≥ 2.
Now, we prove the following lemma.

Lemma 3.1. If (n, k,m) is a nontrivial solution in integers of Equation (3) with k ≥ 2 and
n ≥ k + 1, then the inequalities

m ≤ n < 4× 1014k4 log3 k (12)

hold.

Proof. Combining (3) with (10), one gets∣∣3× 2m − (2α− 1)fk(α)αn−1
∣∣ < 3

2
. (13)

Notice that α > 1, 2k > k + 1 and 2k > (k + 1)(2− (2− 2−k+1)) > (k + 1)(2− α).
Thus, (2α − 1)fk(α)αn−1 is positive. Now, we divide both sides of the above inequality by

(2α− 1)fk(α)αn−1 to obtain the following inequality∣∣3 · 2m · α−(n−1) · ((2α− 1)fk(α))−1 − 1
∣∣ < 3

αn−1
, (14)

where we used the facts 2 + (k + 1)(α− 2) < 2 and 1/(2α− 1) < 1/2.
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In order to prove inequalities (12), we will apply Theorem 2.1. To this end, we take

t := 3, η1 := 2, η2 := α, η3 := 3((2α− 1)fk(α))−1,

and
b1 := m, b2 := −(n− 1), b3 := 1.

We put
Λ := 3 · 2m · α−(n−1) · ((2α− 1)fk(α))−1 − 1 (15)

and inequality (14) becomes

|Λ| < 3

αn−1
. (16)

For these choices, the field K := Q(α) contains η1, η2, η3 and has dK = k. Since h(η1) = log 2

and h(η2) = (logα)/k < (log 2)/k, it follows that

max{kh(η1), |log η1| , 0.16} = k log 2 := A1

and
max{kh(η2), |log η2| , 0.16} = log 2 := A2.

On the other hand, we use the estimate (ii) of Lemma 2.5 and the properties (5), (6) to deduce
that for all k ≥ 2

h(η3) ≤ h(2α− 1) + h(fk(α)) + h(3)

< log 3 + 3 log k + log 3

< 7 log k,

so we get
max{kh(η3), |log η3| , 0.16} = 7k log k := A3.

As m < n− 1, we can take B := n− 1.
Before applying Theorem 2.1, it remains us to prove that Λ 6= 0. Assume the contrary, i.e.,

Λ = 0, this imply that

3 · 2m =
(2α− 1)(α− 1)

2 + (k + 1)(α− 2)
αn−1.

If we conjugate the above relation by the automorphism of Galois σ : α → αi (i > 1) and then
taking absolute values, we get

3 · 2m =

∣∣∣∣ (2αi − 1)(αi − 1)

2 + (k + 1)(αi − 2)
αn−1
i

∣∣∣∣ .
But the above relation is not possible since its left-hand side is greater than or equal to 12, while
its right-hand side is smaller than 6/(k − 1) < 8 as |αi| < 1 and

|2 + (k + 1)(αi − 2)| ≥ (k + 1) |αi − 2| − 2 > k − 1.

Thus, Λ 6= 0. Therefore, applying Theorem 2.1 to get a lower bound for |Λ| and comparing this
with inequality (16), we get

(n− 1) logα− log 3 < 4.82× 1011k4 log k(1 + log k)(1 + log(n− 1)).

Since 1 + log k < 2 log k, 1 + log(n− 1) < 2 log(n− 1) and 1/ logα < 2 for k ≥ 3 and n ≥ 4,
we conclude that

n− 1

log(n− 1)
< 4× 1012k4 log2 k. (17)
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We know that the function x 7→ x/ log x is increasing for all x > e, so it is easy to check that
the inequality

x

log x
< A implies x < 2A logA, whenever A ≥ 3.

Thus, takingA := 4×1012k4 log2 k, inequality (17) and as 30+4 log k+2 log log k < 47 log k,
for all k ≥ 3, we get

n− 1 < 2(4× 1012k4 log2 k) log(4× 1012k4 log2 k)

< (8× 1012k4 log2 k)(30 + 4 log k + 2 log log k)

< 4× 1014k4 log3 k.

3.2 The case 2 ≤ k ≤ 170

In this subsection, we study the cases when k ∈ [2, 170]. We prove the following lemma.

Lemma 3.2. The Diophantine equation (3) has no solution when k ∈ [2, 170] and n ≥ k + 1.

Proof. Let

Γ = m log 2− (n− 1) logα− log

(
(2α− 1)fk(α)

3

)
. (18)

Then eΓ − 1 = Λ, where Λ is defined by (15). Therefore, (16) can be rewritten as∣∣eΓ − 1
∣∣ < 3

αn−1
. (19)

Notice that Γ 6= 0 since Λ 6= 0, so we distinguish the following two cases.

• First, if Γ > 0, then eΓ − 1 > 0. Using the fact that x ≤ ex − 1 for all x ∈ R, inequality
(19) gives

0 < Γ <
3

αn−1
.

Replacing Γ in the above inequality by its formula (18), dividing both sides of the resulting
inequality by logα and using the fact that 1/ logα < 2 for all k ≥ 2, we get

0 < m

(
log 2

logα

)
− n+

(
1− log((2α− 1)fk(α)/3)

logα

)
< 6 · α−(n−1). (20)

Putting

γ :=
log 2

logα
, µ := 1− log((2α− 1)fk(α)/3)

logα
, A := 6, and C := α,

the above inequality (20) yields

0 < mγ − n+ µ < AC−(n−1). (21)

It is clear that γ is an irrational number because α > 1 is a unit in OK, the ring of integers
of K. So α and 2 are multiplicatively independent.

For each k ∈ [2, 170], we find a good approximation of α and a convergent p`/q` of the
continued fraction of γ such that q` > 6M , where M = b4 × 1014k4 log3 kc, which is an
upper bound on m from Lemma 12. After doing this, we use Lemma 2.2 to Inequality (20).
A computer search with Mathematica revealed that the maximum value of
blog(Aq/ε)/ logCc over all k ∈ [2, 170] is 175, which according to Lemma 2.2, is an
upper bound on n− 1. Hence, we deduce that the possible solutions (n, k,m) of Equation
(3) for which k ∈ [2, 170] and Γ > 0 have n ≤ 176, therefore m ≤ 175, since m < n.
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• Now, we consider the case Γ < 0. It is easy to see that 2/αn−1 < 1/2 holds for all k ≥ 2

and n ≥ 3. Thus, inequality (19) implies
∣∣eΓ − 1

∣∣ < 1/2 and therefore e|Γ| < 2. As Γ < 0,

we get 0 < |Γ| ≤ e|Γ| − 1 = e|Γ|
∣∣eΓ − 1

∣∣ < 6

αn−1
. Similarly, as the case when Γ > 0, we

get
0 < (n− 1)γ −m+ µ < AC−(n−1), (22)

where

γ :=
logα

log 2
, µ :=

log((2α− 1)fk(α)/3)

log 2
, A := 9, C := α.

In this case, we also took M := b4 × 1014k4 log3 kc which is an upper bound of n − 1

by Lemma 3.1, and we applied Lemma 2.2 to inequality (22). In this case, with the help
of Mathematica, we found that the maximum value of blog(Aq/ε)/ logCc is 174. Thus,
the possible solutions (n, k,m) of Equation (3) in the range k ∈ [2, 170] and Γ < 0 give
n ≤ 175, so m ≤ 174.

Finally, using Mathematica we compared L(k)
n and 3 × 2m for the range 3 ≤ n ≤ 175 and

2 ≤ m ≤ 174, with m < n and found that Equation (3) has no solution in this range.

3.3 The case k > 170

In this subsection, we analyze the case k > 170.

Lemma 3.3. The Diophantine equation (3) has no solution when k > 170 and n ≥ k + 1.

Proof. For k > 170, we have n < 4× 1014k4 log3 k < 2k/2. In [5, p. 150], it was proved that

(2α− 1)fk(α)αn−1 = 3 · 2n−2 + 3 · 2n−1η +
δ

2
+ ηδ,

where

|η| < 2k

2k
and |δ| < 2n+2

2k/2
.

Thus, from the above equality and (13), we get

|3 · 2m − 3 · 2n−2| =

∣∣∣∣3 · 2m − (2α− 1)fk(α)αn−1 + 3 · 2n−1η +
δ

2
+ ηδ

∣∣∣∣
<

3

2
+

3k · 2n

2k
+

2n+1

2k/2
+

2n+3k

23k/2
.

For k > 170, we get 4k/2k < 1/2k/2, 8/(3 · 2k/2) < 3/2k/2 and 32k/(3 · 23k/2) < 1/2k/2. Thus,
we obtain ∣∣3 · 2m − 3 · 2n−2

∣∣ < 18 · 2n−2

2k/2
.

As n ≥ k + 1, we have 1/2n−1 < 1/2k/2 and factoring out 3 · 2n−2 in the right-hand side of the
above inequality, we get ∣∣2m−n+2 − 1

∣∣ < 6

2k/2
. (23)

Moreover, since m < n, we have that m− n+ 2 ≤ 1, then it follows from (23) that

1

2
< 1− 2m−n+2 <

6

2k/2
.
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So, 2k/2 < 12, which is impossible as k > 170. Hence, we have shown that there are no
solutions (n, k,m) to Equation (3) with k > 170.

Thus, this completes the proof of Theorem 1.1.

4 Conclusion

In this paper, we prove that there are no positive integers m,n, k such that a k-generalized Lucas
number has the form 3× 2m for n ≥ k + 1, i.e., the Diophantine equation L(k)

n = 3× 2m has no
solution in positive integers n, k,m with k ≥ 2 and n ≥ k + 1.
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