Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 27, 2021, No. 2, 129–136 DOI: 10.7546/nntdm.2021.27.2.129-136

Generalized Lucas numbers of the form $3 imes 2^m$

Salah Eddine Rihane¹, Chèfiath Awero Adegbindin² and Alain Togbé³

¹ Department of Mathematics and Computer Science Abdelhafid Boussouf University Mila 43000, Algeria e-mail: salahrihane@hotmail.fr

² Institut de Mathématiques et de Sciences Physiques Dangbo, Bénin

e-mail: adegbindinchefiath@gmail.com

³ Department of Mathematics, Statistics, and Computer Science Purdue University Northwest 1401 S, U.S. 421, Westville IN 46391, United States e-mail: atogbe@pnw.edu

Received: 9 November 2019 Revised: 30 July 2020 Accepted: 25 May 2021

Abstract: For an integer $k \ge 2$, let $(L_n^{(k)})_n$ be the k-generalized Lucas sequence which starts with $0, \ldots, 0, 2, 1$ (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we look the k-generalized Lucas numbers of the form 3×2^m i.e. we study the Diophantine equation $L_n^{(k)} = 3 \times 2^m$ in positive integers n, k, m with $k \ge 2$.

Keywords: *k*-generalized Lucas numbers, Linear form in logarithms, Reduction method. **2020 Mathematics Subject Classification:** 11B39, 11J86.

1 Introduction

Let $k\geq 2$ be an integer. We consider a generalization of Lucas sequence called the k-generalized Lucas sequence $L_n^{(k)}$ defined as

$$L_n^{(k)} = L_{n-1}^{(k)} + L_{n-2}^{(k)} + \dots + L_{n-k}^{(k)} \quad \text{for all } n \ge 2,$$
(1)

with the initial conditions $L_{-(k-2)}^{(k)} = L_{-(k-3)}^{(k)} = \cdots L_{-1}^{(k)} = 0$, $L_0^{(k)} = 2$ and $L_1^{(k)} = 1$. If k = 2, we obtain the classical Lucas sequence

 $L_0 = 2$, $L_1 = 1$, and $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$.

$$(L_n)_{n\geq 0} = \{2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, \ldots\}.$$

If k = 3, then the 3-Lucas sequence is

 $(L_n^{(3)})_{n\geq -1} = \{0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, \ldots\}.$

If k = 4, then the 4-Lucas sequence is

$$(L_n^{(4)})_{n\geq -2} = \{0, 0, 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, \ldots\}$$

It is known that if $2 \le n \le k$, then

$$L_n^{(k)} = 3 \times 2^{n-2},\tag{2}$$

see Lemma 2 in [5]. This raises the following natural question: are there any positive integers n, m, k such that

$$L_n^{(k)} = 3 \times 2^m?$$
(3)

The aim of this paper is to give an answer to this problem by proving the following result.

Theorem 1.1. *The Diophantine equation* (3) *has no solution if* $n \ge k + 1$ *.*

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of algebraic numbers and a reduction algorithm originally introduced by Baker and Davenport [2]. Here, we use a version due to Dujella and Pethő in [6, Lemma 5(a)].

2 The tools

2.1 Linear forms in logarithms

For any non-zero algebraic number η of degree d over \mathbb{Q} , whose minimal polynomial over \mathbb{Z} is $a \prod_{j=1}^{d} (X - \eta^{(j)})$, we denote by

$$h(\eta) = \frac{1}{d} \left(\log |a| + \sum_{j=1}^{d} \log \max \left(1, |\eta^{(j)}| \right) \right)$$

the usual absolute logarithmic height of η . In particular, if $\eta = p/q$ is a rational number with gcd(p,q) = 1 and q > 0, then $h(\eta) = \log \max\{|p|,q\}$. The following properties of the function absolute logarithmic height h(), which will be used in the next sections without special reference, are also known:

$$h(\eta \pm \gamma) \leq h(\eta) + h(\gamma) + \log 2, \tag{4}$$

$$h(\eta \gamma^{\pm 1}) \leq h(\eta) + h(\gamma),$$
 (5)

$$h(\eta^s) = |s| h(\eta) \quad (s \in \mathbb{Z}).$$
(6)

With this notation, Matveev proved the following theorem (see [7]).

Theorem 2.1. Let η_1, \ldots, η_s be real algebraic numbers and let b_1, \ldots, b_s be nonzero rational integer numbers. Let $d_{\mathbb{K}}$ be the degree of the number field $\mathbb{Q}(\eta_1, \ldots, \eta_s)$ over \mathbb{Q} and let A_j be a positive real number satisfying

$$A_j = \max\{d_{\mathbb{K}}h(\eta), |\log \eta|, 0.16\} \text{ for } j = 1, \dots, s.$$

Assume that $B \ge \max\{|b_1|, ..., |b_s|\}$. If $\eta_1^{b_1} \cdots \eta_s^{b_s} - 1 \ne 0$, then

$$|\eta_1^{b_1} \cdots \eta_s^{b_s} - 1| \ge \exp(-1.4 \cdot 30^{s+3} \cdot s^{4.5} \cdot d_{\mathbb{K}}^2 (1 + \log d_{\mathbb{K}})(1 + \log B) A_1 \cdots A_s)$$

2.2 Reduction algorithm

The following lemma can be found in [1].

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction of the irrational γ such that q > 6M, and let A, C, μ be some real numbers with A > 0 and C > 1. Let

$$\varepsilon = ||\mu q|| - M \cdot ||\gamma q||,$$

where $|| \cdot ||$ denotes the distance from the nearest integer. If $\varepsilon > 0$, then there is no solution of the inequality

$$0 < u\gamma - v + \mu < AC^{-w}$$

in positive integers u, v and w with

$$u \le M$$
 and $w \ge \frac{\log(Aq/\varepsilon)}{\log C}$.

2.3 Properties of the k-generalized Lucas sequence

In this subsection, we recall some facts and properties of these sequences which will be used later.

We know that the characteristic polynomial of the k-generalized Lucas numbers $(L_n^{(k)})_n$, namely

$$\Psi_k(x) = x^k - x^{k-1} - \dots - x - 1,$$

is irreducible over $\mathbb{Q}[x]$ and has just one root outside the unit circle; the other roots are strictly inside the unit circle (see, for example, [8,9,12]). We denote by $\alpha := \alpha(k)$ the single root, which is located between $2(1-2^{-k})$ and 2 (see [12]). We label its roots by $\alpha_1, \ldots, \alpha_k$ with $\alpha := \alpha_1$. To simplify the notation, in general, we omit the dependence on k of α .

For an integer $s \ge 2$, we define the function

$$f_s(x) = \frac{x-1}{2+(s+1)(x-2)}.$$
(7)

Now, we are ready to recall in the following lemmas some properties of the sequence $(L_n^{(k)})_{n \ge -(k-2)}$, which will be used for the proof of Theorem 1.1.

Lemma 2.3. [5, p. 144]

(a) For all $n \ge 1$ and $k \ge 2$, we have

$$\alpha^{n-1} \le L_n^{(k)} \le 2\alpha^n. \tag{8}$$

(b) The following "Binet-like" formula holds for all $n \ge -(k-2)$:

$$L_n^{(k)} = \sum_{i=1}^k (2\alpha_i - 1) f_k(\alpha_i) \alpha_i^{n-1}.$$
(9)

(c) For all $n \ge -(k-2)$, we have

$$\left|L_{n}^{(k)} - (2\alpha - 1)f_{k}(\alpha)\alpha^{n-1}\right| < \frac{3}{2}.$$
(10)

Lemma 2.4. [11] For every positive integer $n \ge 2$, we have

$$L_n^{(k)} \le 3 \cdot 2^{n-2}.$$
 (11)

Moreover, if $n \ge k+2$, then the above inequality is strict.

Lemma 2.5. [4, pp. 89–90] For $k \ge 2$, let α be the dominant root of $\Psi_k(x)$, and consider the function $f_s(x)$ defined in (7). Then:

- (i) The inequalities $1/2 < f_k(\alpha) < 3/4$ and $|f_k(\alpha^{(i)})| < 1$, for $2 \le i \le k$ hold. So the number $f_k(\alpha)$ is not an algebraic integer.
- (ii) The logarithmic height function satisfies $h(f_k(\alpha)) < 3 \log k$.

3 The proof of the main result

3.1 An inequality for *n* and *m* in terms of *k*

From now on, we assume that $n \ge k + 1$. By Lemma 2.4 and Equation (3) we get

$$3 \cdot 2^m = L_n^{(k)} \le 3 \cdot 2^{n-2},$$

so we deduce that m < n - 1. Thus, we may suppose that $n \ge 3$ and $m \ge 2$. Now, we prove the following lemma.

Lemma 3.1. If (n, k, m) is a nontrivial solution in integers of Equation (3) with $k \ge 2$ and $n \ge k + 1$, then the inequalities

$$m \le n < 4 \times 10^{14} k^4 \log^3 k \tag{12}$$

hold.

Proof. Combining (3) with (10), one gets

$$\left|3 \times 2^{m} - (2\alpha - 1)f_{k}(\alpha)\alpha^{n-1}\right| < \frac{3}{2}.$$
 (13)

Notice that $\alpha > 1$, $2^k > k + 1$ and $2^k > (k + 1)(2 - (2 - 2^{-k+1})) > (k + 1)(2 - \alpha)$.

Thus, $(2\alpha - 1)f_k(\alpha)\alpha^{n-1}$ is positive. Now, we divide both sides of the above inequality by $(2\alpha - 1)f_k(\alpha)\alpha^{n-1}$ to obtain the following inequality

$$\left| 3 \cdot 2^m \cdot \alpha^{-(n-1)} \cdot ((2\alpha - 1)f_k(\alpha))^{-1} - 1 \right| < \frac{3}{\alpha^{n-1}},\tag{14}$$

where we used the facts $2 + (k+1)(\alpha - 2) < 2$ and $1/(2\alpha - 1) < 1/2$.

In order to prove inequalities (12), we will apply Theorem 2.1. To this end, we take

$$t := 3, \quad \eta_1 := 2, \quad \eta_2 := \alpha, \quad \eta_3 := 3((2\alpha - 1)f_k(\alpha))^{-1},$$

and

$$b_1 := m, \quad b_2 := -(n-1), \quad b_3 := 1.$$

We put

$$\Lambda := 3 \cdot 2^m \cdot \alpha^{-(n-1)} \cdot ((2\alpha - 1)f_k(\alpha))^{-1} - 1$$
(15)

and inequality (14) becomes

$$|\Lambda| < \frac{3}{\alpha^{n-1}}.\tag{16}$$

For these choices, the field $\mathbb{K} := \mathbb{Q}(\alpha)$ contains η_1, η_2, η_3 and has $d_{\mathbb{K}} = k$. Since $h(\eta_1) = \log 2$ and $h(\eta_2) = (\log \alpha)/k < (\log 2)/k$, it follows that

$$\max\{kh(\eta_1), |\log \eta_1|, 0.16\} = k \log 2 := A_1$$

and

$$\max\{kh(\eta_2), |\log \eta_2|, 0.16\} = \log 2 := A_2$$

On the other hand, we use the estimate (ii) of Lemma 2.5 and the properties (5), (6) to deduce that for all $k \ge 2$

$$h(\eta_3) \leq h(2\alpha - 1) + h(f_k(\alpha)) + h(3) < \log 3 + 3 \log k + \log 3 < 7 \log k,$$

so we get

$$\max\{kh(\eta_3), |\log \eta_3|, 0.16\} = 7k \log k := A_3$$

As m < n - 1, we can take B := n - 1.

Before applying Theorem 2.1, it remains us to prove that $\Lambda \neq 0$. Assume the contrary, i.e., $\Lambda = 0$, this imply that

$$3 \cdot 2^{m} = \frac{(2\alpha - 1)(\alpha - 1)}{2 + (k+1)(\alpha - 2)} \alpha^{n-1}.$$

If we conjugate the above relation by the automorphism of Galois $\sigma : \alpha \to \alpha_i \ (i > 1)$ and then taking absolute values, we get

$$3 \cdot 2^{m} = \left| \frac{(2\alpha_{i} - 1)(\alpha_{i} - 1)}{2 + (k+1)(\alpha_{i} - 2)} \alpha_{i}^{n-1} \right|.$$

But the above relation is not possible since its left-hand side is greater than or equal to 12, while its right-hand side is smaller than 6/(k-1) < 8 as $|\alpha_i| < 1$ and

$$|2 + (k+1)(\alpha_i - 2)| \ge (k+1)|\alpha_i - 2| - 2 > k - 1.$$

Thus, $\Lambda \neq 0$. Therefore, applying Theorem 2.1 to get a lower bound for $|\Lambda|$ and comparing this with inequality (16), we get

$$(n-1)\log\alpha - \log 3 < 4.82 \times 10^{11} k^4 \log k (1 + \log k) (1 + \log(n-1)).$$

Since $1 + \log k < 2 \log k$, $1 + \log(n-1) < 2 \log(n-1)$ and $1/\log \alpha < 2$ for $k \ge 3$ and $n \ge 4$, we conclude that

$$\frac{n-1}{\log(n-1)} < 4 \times 10^{12} k^4 \log^2 k.$$
(17)

We know that the function $x \mapsto x/\log x$ is increasing for all x > e, so it is easy to check that the inequality $\frac{x}{\log x} < A$ implies $x < 2A \log A$, whenever $A \ge 3$.

Thus, taking $A := 4 \times 10^{12} k^4 \log^2 k$, inequality (17) and as $30+4 \log k+2 \log \log k < 47 \log k$, for all $k \ge 3$, we get

$$n-1 < 2(4 \times 10^{12} k^4 \log^2 k) \log(4 \times 10^{12} k^4 \log^2 k) < (8 \times 10^{12} k^4 \log^2 k) (30 + 4 \log k + 2 \log \log k) < 4 \times 10^{14} k^4 \log^3 k.$$

3.2 The case $2 \le k \le 170$

In this subsection, we study the cases when $k \in [2, 170]$. We prove the following lemma.

Lemma 3.2. The Diophantine equation (3) has no solution when $k \in [2, 170]$ and $n \ge k + 1$. *Proof.* Let

$$\Gamma = m \log 2 - (n-1) \log \alpha - \log \left(\frac{(2\alpha - 1)f_k(\alpha)}{3}\right).$$
(18)

Then $e^{\Gamma} - 1 = \Lambda$, where Λ is defined by (15). Therefore, (16) can be rewritten as

$$\left|e^{\Gamma} - 1\right| < \frac{3}{\alpha^{n-1}}.\tag{19}$$

Notice that $\Gamma \neq 0$ since $\Lambda \neq 0$, so we distinguish the following two cases.

• First, if $\Gamma > 0$, then $e^{\Gamma} - 1 > 0$. Using the fact that $x \le e^x - 1$ for all $x \in \mathbb{R}$, inequality (19) gives

$$0 < \Gamma < \frac{3}{\alpha^{n-1}}$$

Replacing Γ in the above inequality by its formula (18), dividing both sides of the resulting inequality by $\log \alpha$ and using the fact that $1/\log \alpha < 2$ for all $k \ge 2$, we get

$$0 < m\left(\frac{\log 2}{\log \alpha}\right) - n + \left(1 - \frac{\log((2\alpha - 1)f_k(\alpha)/3)}{\log \alpha}\right) < 6 \cdot \alpha^{-(n-1)}.$$
 (20)

Putting

$$\gamma := \frac{\log 2}{\log \alpha}, \quad \mu := 1 - \frac{\log((2\alpha - 1)f_k(\alpha)/3)}{\log \alpha}, \quad A := 6, \quad \text{and} \quad C := \alpha,$$

the above inequality (20) yields

$$0 < m\gamma - n + \mu < AC^{-(n-1)}.$$
 (21)

It is clear that γ is an irrational number because $\alpha > 1$ is a unit in $\mathcal{O}_{\mathbb{K}}$, the ring of integers of \mathbb{K} . So α and 2 are multiplicatively independent.

For each $k \in [2, 170]$, we find a good approximation of α and a convergent p_{ℓ}/q_{ℓ} of the continued fraction of γ such that $q_{\ell} > 6M$, where $M = \lfloor 4 \times 10^{14} k^4 \log^3 k \rfloor$, which is an upper bound on m from Lemma 12. After doing this, we use Lemma 2.2 to Inequality (20). A computer search with Mathematica revealed that the maximum value of $\lfloor \log(Aq/\varepsilon)/\log C \rfloor$ over all $k \in [2, 170]$ is 175, which according to Lemma 2.2, is an upper bound on n - 1. Hence, we deduce that the possible solutions (n, k, m) of Equation (3) for which $k \in [2, 170]$ and $\Gamma > 0$ have $n \leq 176$, therefore $m \leq 175$, since m < n.

• Now, we consider the case $\Gamma < 0$. It is easy to see that $2/\alpha^{n-1} < 1/2$ holds for all $k \ge 2$ and $n \ge 3$. Thus, inequality (19) implies $|e^{\Gamma} - 1| < 1/2$ and therefore $e^{|\Gamma|} < 2$. As $\Gamma < 0$, we get $0 < |\Gamma| \le e^{|\Gamma|} - 1 = e^{|\Gamma|} |e^{\Gamma} - 1| < \frac{6}{\alpha^{n-1}}$. Similarly, as the case when $\Gamma > 0$, we get

$$0 < (n-1)\gamma - m + \mu < AC^{-(n-1)},$$
(22)

where

$$\gamma := \frac{\log \alpha}{\log 2}, \quad \mu := \frac{\log((2\alpha - 1)f_k(\alpha)/3)}{\log 2}, \quad A := 9, \quad C := \alpha$$

In this case, we also took $M := \lfloor 4 \times 10^{14} k^4 \log^3 k \rfloor$ which is an upper bound of n-1 by Lemma 3.1, and we applied Lemma 2.2 to inequality (22). In this case, with the help of Mathematica, we found that the maximum value of $\lfloor \log(Aq/\varepsilon)/\log C \rfloor$ is 174. Thus, the possible solutions (n, k, m) of Equation (3) in the range $k \in [2, 170]$ and $\Gamma < 0$ give $n \leq 175$, so $m \leq 174$.

Finally, using Mathematica we compared $L_n^{(k)}$ and 3×2^m for the range $3 \le n \le 175$ and $2 \le m \le 174$, with m < n and found that Equation (3) has no solution in this range.

3.3 The case k > 170

In this subsection, we analyze the case k > 170.

Lemma 3.3. *The Diophantine equation* (3) *has no solution when* k > 170 *and* $n \ge k + 1$.

Proof. For k > 170, we have $n < 4 \times 10^{14} k^4 \log^3 k < 2^{k/2}$. In [5, p. 150], it was proved that

$$(2\alpha - 1)f_k(\alpha)\alpha^{n-1} = 3 \cdot 2^{n-2} + 3 \cdot 2^{n-1}\eta + \frac{\delta}{2} + \eta\delta,$$

where

$$|\eta| < rac{2k}{2^k} \quad ext{and} \quad |\delta| < rac{2^{n+2}}{2^{k/2}}.$$

Thus, from the above equality and (13), we get

$$\begin{aligned} |3 \cdot 2^m - 3 \cdot 2^{n-2}| &= \left| 3 \cdot 2^m - (2\alpha - 1)f_k(\alpha)\alpha^{n-1} + 3 \cdot 2^{n-1}\eta + \frac{\delta}{2} + \eta\delta \right| \\ &< \frac{3}{2} + \frac{3k \cdot 2^n}{2^k} + \frac{2^{n+1}}{2^{k/2}} + \frac{2^{n+3}k}{2^{3k/2}}. \end{aligned}$$

For k > 170, we get $4k/2^k < 1/2^{k/2}$, $8/(3 \cdot 2^{k/2}) < 3/2^{k/2}$ and $32k/(3 \cdot 2^{3k/2}) < 1/2^{k/2}$. Thus, we obtain

$$\left| 3 \cdot 2^m - 3 \cdot 2^{n-2} \right| < 18 \cdot \frac{2^{n-2}}{2^{k/2}}.$$

As $n \ge k+1$, we have $1/2^{n-1} < 1/2^{k/2}$ and factoring out $3 \cdot 2^{n-2}$ in the right-hand side of the above inequality, we get

$$\left|2^{m-n+2} - 1\right| < \frac{6}{2^{k/2}}.$$
(23)

Moreover, since m < n, we have that $m - n + 2 \le 1$, then it follows from (23) that

$$\frac{1}{2} < 1 - 2^{m-n+2} < \frac{6}{2^{k/2}}.$$

So, $2^{k/2} < 12$, which is impossible as k > 170. Hence, we have shown that there are no solutions (n, k, m) to Equation (3) with k > 170.

Thus, this completes the proof of Theorem 1.1.

4 Conclusion

In this paper, we prove that there are no positive integers m, n, k such that a k-generalized Lucas number has the form 3×2^m for $n \ge k + 1$, i.e., the Diophantine equation $L_n^{(k)} = 3 \times 2^m$ has no solution in positive integers n, k, m with $k \ge 2$ and $n \ge k + 1$.

References

- [1] Adegbindin, C., Luca, F., & Togbé, A. (2019). Lucas numbers as sums of two repdigits. *Lithuanian Mathematical Journal*, 59(3), 295–304.
- [2] Baker, A., & Davenport, H. (1969). The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$. Quarterly Journal of Mathematics, Oxford Series (2), 20, 129–137.
- [3] Bravo, J. J., & Luca, F. (2012). Powers of two in generalized Fibonacci sequences. *Revista Colombiana de Matemáticas*, 46, 67–79.
- [4] Bravo, J. J., Gómez, C. A., & Luca, F. (2016). Powers of two as sums of two k-Fibonacci numbers. *Miskolc Mathematical Notes*, 17, 85–100.
- [5] Bravo, J. J., & Luca, F. (2014). Repdigits in *k*-Lucas sequences. *Proceedings of the Indian Academy of Sciences: Mathematical Sciences*, 124(2), 141–154.
- [6] Dujella, A., & Pethő, A. (1998). A generalization of a theorem of Baker and Davenport. *Quarterly Journal of Mathematics, Oxford Series* (2), 49(195), 291–306.
- [7] Matveev, E. M. (2000). An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II. *Izvestiya: Mathematics*, 64(6), 1217–1269.
- [8] Mile, E. P. Jr. (1960). Generalized Fibonacci numbers and associated matrices. *American Mathematical Monthly*, 67, 745–752.
- [9] Miller, M. D. (1971). Mathematical notes: on generalized Fibonacci number. *American Mathematical Monthly*, 78, 1108–1109.
- [10] Pethő, A. (1982). Perfect powers in second order linear recurrences. Journal of Number Theory, 15, 5–13.
- [11] Rihane, S. E., Faye, B., Luca, F., & Togbé, A. (2020). Powers of two in generalized Lucas sequences. *The Fibonacci Quarterly*, 58(3), 254–260.
- [12] Wolfram, D. A. (1998). Solving generalized Fibonacci recurrences. *The Fibonacci Quarterly*, 36(2), 129–145.