D. Bhattacharjee
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 27, 2021, Number 1, Pages 32–44
DOI: 10.7546/nntdm.2021.27.1.32-44
Full paper (PDF, 600 Kb)
Details
Authors and affiliations
D. Bhattacharjee
Department of Mathematics, North-Eastern Hill University
Permanent Campus, Shillong-793022, India
Abstract
In this paper by an arithmetic function we shall mean a real-valued function on the set of positive integers. We recall the definitions of some common arithmetic convolutions. We also recall the definitions of a multiplicative function, a generalized multiplicative function (or briefly a GM-function), an additive function and a generalized additive function (or briefly a GA-function). We shall study in details some properties of GM-functions as well as GA-functions using some particular arithmetic convolutions namely the Narkiewicz’s A-product and the author’s B-product. We conclude our discussion with some examples.
Keywords
- Arithmetic function
- Multiplicative function
- Arithmetic convolution
- Dirichlet convolution
- Narkiewicz’s A-product
- B-product
- Multiplicative B-product
- GA-function
- GM-function
2010 Mathematics Subject Classification
- 11A25
References
- Apostol, T. M. (1976). Introduction to Analytic Number Theory, Springer-Verlag, New York.
- Bell, E. T. (1915). Arithmetical Theory of Certain Numerical Functions. Volume 1,
University of Washington. - Bhattacharjee, D. (1997). B-product and its properties. Bulletin of Pure and Applied Sciences, 16(1), 77–83.
- Bhattacharjee, D. (1998). Multiplicative B-product and its properties. Georgian
Mathematical Journal, 5(4), 315–320. - Bhattacharjee, D. (2002). A Generalized B-product and its properties, Bulletin of the Allahabad Mathematical Society, 17, 17–21.
- Bhattacharjee, D. (2005). Multiplicative 𝐾𝐵-product and its properties. Bulletin of the Calcutta Mathematical Society, 97(2), 153–162.
- Bhattacharjee, D. (2007). On Some New Arithmetical Convolutions. Proceedings of the 2007 International Conference on High Performance Computing Networking and Communication Systems (HPCNCS-07), 9–12 July 2007, Orlando, FL, USA, 26–30.
- Bhattacharjee, D., & Saikia, P. K. (2012). On Some New Class of Arithmetic Convolutions Involving Arbitrary Sets of Integers. Romanian Journal of Mathematics and Computer Science, 2(2), 23–35.
- Chawla, L. M. (1973). Distributive arithmetical functions of two or more variables. Journal of Natural Sciences Math., 13, 263–270.
- Pellegrino, F. (1953) Sviluppi moderni del Calcolo numerico integrale di Michele Cipolla. IV Congresso dell’ Unione Matematica Italiana-Taormina, 2, 161–168.
- Cohen, E. (1959).Arithmetical functions associated with arbitrary sets of integers, Acta Arithmetica, 5, 407–415.
- Davison, T. M. K. (1966). On Arithmetic Convolutions. Canadian Mathematical Bulletin, 9, 287–296.
- Dickson, L. E.(1919).History of the Theory of Numbers, Washington: Carnegie Institution.
- Gioia, A. A. (1965).The K-product of the arithmetic functions, Canadian Journal of Mathematics, 17, 970–976.
- Haukkanen, P. (1992). A note on generalized multiplicative and generalized additive arithmetic functions. The Mathematics Student, 61(1–4), 113–116.
- Haukkanen, P. (1996). On a Binomial Convolution of Arithmetic Functions. Nieuw Archief voor Wiskunde, 14(2), 209–216.
- Lehmer, D. H. (1931). A New Calculus of Numerical Functions. American Journal of Mathematics, 53, 843–854.
- McCarthy, P. J. (1986). Introduction to Arithmetical Functions, Springer-Verlag, New York.
- Narkiewicz, W. (1963). On a class of arithmetical convolutions. Colloquium
Mathematicum, 10, 81–94. - Scheid, H. (1969). Einige Ringe zahlentheoretischer Funktionen. Journal für die reine und angewandte Mathematik, 1969(237), 1–11.
- Sivaramakrishnan, R. (1989). Classical Theory of Arithmetical Functions, Monographs and Textbooks in Pure and Applied Mathematics, 126, Marcel-Dekker Inc., New York.
- Subbarao, M. V. (1972). On Some Arithmetical Convolutions, Lecture Notes in
Mathematics, Springer, 251, 247–271. - Tóth, L. (2002). On a Class of Arithmetic Convolutions involving Arbitrary Sets of
Integers. Mathematica Pannonica, 13, 249–263. - Tóth, L. (2004). On a Certain Arithmetic Functions involving Exponential Divisors. Annales Univ. Sci. Budapest., Sect. Comp., 24, 285–294.
- Vaidyanathaswamy, R. (1931). The Theory of Multiplicative Arithmetical Functions. Transactions of the American Mathematical Society, 33, 579–662.
- Zafrullah, M. (1988). On generalized multiplicative functions. Journal of Natural Sciences and Mathematics, 28, 257–268.
Related papers
Cite this paper
Bhattacharjee, D. (2021). A study on some generalized multiplicative and generalized additive arithmetic functions. Notes on Number Theory and Discrete Mathematics, 27(1), 32-44, DOI: 10.7546/nntdm.2021.27.1.32-44.