József Sándor

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367-8275

Volume 26, 2020, Number 4, Pages 122–127

DOI: 10.7546/nntdm.2020.26.4.122-127

**Full paper (PDF, 156 Kb)**

## Details

### Authors and affiliations

József Sándor

*Department of Mathematics, Babes-Bolyai University
Cluj-Napoca, Romania
*

### Abstract

We obtain an extension of the famous Gauss product formula to the case of *k*-gamma functions. The Sándor–Tóth short product formula [16] is also attended to these functions. An asymptotic formula and Raabe’s integral analogue are also considered.

### Keywords

- Arithmetic function
- Gamma function
*k*-gamma function

### 2010 Mathematics Subject Classification

- 11A25
- 33B15

### References

- Allouche, J.-P. (2015). Paperfolding infinite products and the gamma function. J. Number Theory, 148, 95-111.
- Bachraoui, M. E., & Sándor, J. (2019). On a theta product of Jacobi and its applications to q-gamma products. J. Math. Anal. Appl., 472(1), 814-826.
- Ben-Ari, I., Hay, D., & Roitershtein, A. (2014). On Wallis-type products and Pólya’s urn schemes. Amer. Math. Monthly, 121(5), 422-432.
- Chamberland, M., & Straub, A. (2013). On gamma quotients and infinite products. Adv. Appl. Math, 51(5), 546-562.
- Diaz, R., & Teruel, C. (2005).
*q, h*-generalized gamma and beta functions. J. Nonlinear Math, Phys., 12(1), 118-134. - Diaz, R., & Pariguan, E. (2007). On hypergeormetric functions and
*k*-Pochhamer symbol. Div. Mat., 15(2), 179-192. - Hardy, G. H., & Wright, E. M. (1968). An Introduction to the Theory of Numbers, Clarendon Press, Oxford.
- Kokologiannaki, C. G. (2010). Properties and inequalities of generalized
*k*-gamma, beta and zeta functions. Int. J. Contemp. Math. Sci., 5(14), 653-660 - Kokologiannaki, C. G., & Krasniqi, V. (2013). Some properties of the
*k*-gamma functions. Le Matematiche (Catania), LXVIII(I), 13-22. - Krasniqi, V. (2010). Inequalities and monotonicity for the ration of
*k*-gamma function. Scientia Magna, 6(1), 40-45. - Mansour, M. (2009). Determining the k-generalized gamma function
*Γ*by functional equations. Int. J Contemp. Math. Sci., 4(21), 1037-1042._{k}(x) - Martin, G. (2009). A product of gamma function values at fractions with the same denominator. Preprint. Available online: http://arxiv.org/abs/0907.4383.
- Nijenhuis, A. (2010). Short gamma products with simple values. Amer. Math. Monthly, 117(8), 733-737.
- Nimbran, A. S. (2016). Interesting infinite products of rational functions motivated by Euler. Math. Student, 85, 117-133.
- Nishizawa, K. (2012). Finite gamma products. In: Akashi, S., et al. (Eds.) Nonlinear Analysis and Optimization, 239-249. Available online: http://www.ybook.co.jp/online2/nao2012matsue.html
- Sándor, J., & Tóth, L. (1989). A remark on the gamma function. Elem. Math. (Basel), 44(3), 73-76.

## Related papers

## Cite this paper

Sándor, J. (2020). The Gauss product and Raabe’s integral for *k*-gamma functions. *Notes on Number Theory and Discrete Mathematics*, 26 (4), 122-127, DOI: 10.7546/nntdm.2020.26.4.122-127.