Yüksel Soykan and Erkan Taşdemir

Notes on Number Theory and Discrete Mathematics

Print ISSN 1310–5132, Online ISSN 2367–8275

Volume 26, 2020, Number 3, Pages 163—175

DOI: 10.7546/nntdm.2020.26.3.163-175

**Download full paper: PDF, 173 Kb**

## Details

### Authors and affiliations

Yüksel Soykan

*Department of Mathematics, Art and Science Faculty
Zonguldak Bülent Ecevit University, 67100, Zonguldak, Turkey
*

Erkan Taşdemir

*Pınarhisar Vocational School of Higher Education
Kırklareli University, 39300, Kırklareli, Turkey*

### Abstract

In this paper, we introduce the bicomplex generalized Tetranacci quaternions. Furthermore, we present some properties of these quaternions and derive relationships between them.

### Keywords

- Bicomplex Tetranacci numbers
- Quaternions
- Bicomplex Tetranacci quaternions
- Bicomplex Tetranacci–Lucas quaternions

### 2010 Mathematics Subject Classification

- 11B39
- 11B83
- 17A45
- 05A15

### References

- Aydın, F. T. (2018). Bicomplex
*k*-Fibonacci Quaternions, arXiv: 1810.05003 [math.NT]. - Aydın, F. T. (2018). On Bicomplex Pell and Pell–Lucas Numbers, Communications in Advanced Mathematical Sciences, 1 (2), 142–155.
- Bacani, J. B., & Rabago, J. F. T. (2015). On Generalized Fibonacci Numbers, Applied Mathematical Sciences, 9 (25), 3611–3622.
- Catarino, P. (2019). Bicomplex
*k*-Pell Quaternions, Computational Methods and Function Theory, 19, 65-76. - Cerda, G. (2018). Bicomplex Third-Order Jacobsthal quaternions, arXiv: 1809.06979 [math.AC].
- Dresden, G.P. & Du, Z. (2014). A Simplified Binet Formula for
*k*-Generalized Fibonacci Numbers, J. Integer Seq., 17, art. 14.4.7, 1–9. - Luna-Elizarraras, M.E., Shapiro, M., Struppa, D.C., & Vajiac, A. (2012). Bicomplex Numbers and their Elementary Functions, CUBO A Mathematical Journal, 14 (2), 61–80.
- Halıcı, S., & Karataş, A. (2018). Bicomplex Lucas and Horadam Numbers, arXiv:

1806.05038v2 [math.RA]. - Halici, S. (2019). On Bicomplex Fibonacci Numbers and Their Generalization. In: Flaut C., Hoskova-Mayerova S., Flaut D. (eds) Models and Theories in Social Systems. Studies in Systems, Decision and Control, Vol 179. Springer, 509–524.
- Hathiwala, G.S., & Shah, D.V. (2017). Binet–Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods, Mathematical Journal of Interdisciplinary Sciences, 6 (1), 37–48.
- Howard, F.T., & Saidak, F. (2010). Zhou’s Theory of Constructing Identities, Congress Numer., 200, 225–237.
- Kızılateş, C., Catarino, P., & Tuğlu, N. (2019). On the Bicomplex Generalized Tribonacci Quaternions. Mathematics, 7, 80.
- Melham, R. S. (1999). Some Analogs of the Identity
*F*_{n}^{2}+*F*_{n+1}^{2}=*F*_{2n+1}^{2}, Fibonacci Quarterly, 37 (4), 305–311. - Natividad, L. R. (2013). On Solving Fibonacci-Like Sequences of Fourth, Fifth and Sixth Order, International Journal of Mathematics and Computing, 3 (2), 38–40.
- Nurkan, S.K., & Güven, İ. A. (2015). A Note on Bicomplex Fibonacci and Lucas Numbers, arXiv: 1508.03972 [math.NT].
- Nurkan, S.K., & Güven İ. A. (2018). A Note on Bicomplex Fibonacci and Lucas Numbers, International Journal of Pure and Applied Mathematics, 120 (3), 365–377.
- Rochon, D., & Shapiro, M. (2004). On Algebraic Properties of Bicomplex and Hyperbolic Numbers, Anal. Univ. Oradea Fascicola. Matematica, 11, 1–28.
- Singh, B., Bhadouria, P., Sikhwal, O., & Sisodiya, K. (2014). A Formula for Tetranacci-Like Sequence, Gen. Math. Notes, 20 (2), 136–141.
- Soykan, Y. (2019). Gaussian Generalized Tetranacci Numbers, Journal of Advances in Mathematics and Computer Science, 31 (3), 1–21.
- Soykan, Y. (2019). Bicomplex Tetranacci and Tetranacci–Lucas Quaternions, Communications in Mathematics and Applications, 11 (1), 95–112.
- Waddill, M.E. (1967). Another Generalized Fibonacci Sequence, Fibonacci Quarterly, 5 (3), 209–227.
- Waddill, M.E. (1992). The Tetranacci Sequence and Generalizations, The Fibonacci Quarterly, 30 (1), 9–20.
- Zaveri, M.N. & Patel, J.K. (2016). Binet’s Formula for the Tetranacci Sequence, International Journal of Science and Research, 5 (12), 1911–1914.

## Related papers

## Cite this paper

Soykan, Y. & Taşdemir, Е. (2020). On bicomplex generalized Tetranacci quaternions. Notes on Number Theory and Discrete Mathematics, 26 (3), 163-175, doi: 10.7546/nntdm.2020.26.3.163-175.