Fügen Torunbalcı Aydın
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 2, Pages 167–176
DOI: 10.7546/nntdm.2020.26.2.167-176
Full paper (PDF, 194 Kb)
Details
Authors and affiliations
Fügen Torunbalcı Aydın
Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering
Department of Mathematical Engineering
Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
Abstract
In this paper, circular-hyperbolic Fibonacci numbers and quaternions are defined. Also, some algebraic properties of circular-hyperbolic Fibonacci numbers and quaternions which are connected with circular-hyperbolic numbers and Fibonacci numbers are investigated. Furthermore, Honsberger’s identity, the generating function, Binet’s formula, d’Ocagne’s identity, Cassini’s identity, and Catalan’s identity for these quaternions are given.
Keywords
- Fibonacci number
- Hyperbolic number
- Dual-hyperbolic number
- Circular-hyperbolic number
- Circular-hyperbolic Fibonacci number
2010 Mathematics Subject Classification
- 11B37
- 20G20
- 11R52
References
- Bodnar, O. Y. (1994). The Golden Section and Non-Euclidean Geometry in Nature and Art, Publishing House “Svit”, Lvov (In Russian).
- Catoni, F., Boccaletti, R., Cannata, R., Catoni, V., Nichelatti, E., & Zampatti, P. (2008). The Mathematics of Minkowski Space–Time, Birkhauser, Basel.
- Cihan, A., Azak, A. Z., Güngör, M. A., & Tosun, M. (2019). A study of Dual Hyperbolic Fibonacci and Lucas numbers. An. St. Univ. Ovidius Constanta, 27 (1), 35–48.
- Clifford, W. K. (1873). Preliminary sketch of bi-quaternions. Proc. London Math. Soc., 64 (4), 381–395.
- Dattoli, G., Licciardi, S., Pidatella, R. M., & Sabia, E. (2018). Hybrid complex numbers: The matrix version, Adv. Appl. Clifford Algebras, 28 (3), 58.
- Gargoubi, H. & Kossentini, S.(2016). f-algebra structure on hyperbolic numbers. Adv. Appl. Clifford Algebras, 26 (4), 1211–1233.
- Güngör, M. A., & Azak, A. Z. (2017). Investigation of dual complex Fibonacci, dual complex Lucas numbers and their properties, Adv. Appl. Clifford Algebras, 27 (4), 3083–3096.
- Halıcı, S. (2012). On Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 22 (2), 321–327.
- Hamilton, W. R. (1866). Elements of Quaternions. Longmans, Green and Co., London.
- Horadam, A. F. (1963). Complex Fibonacci Numbers and Fibonacci Quaternions, American Math. Monthly, 70 (3), 289–291.
- Horadam, A. F. (1993). Quaternion Recurrence Relations, Ulam Quarterly, 2 (2), 23–33.
- Iyer, M. R. (1969). A Note on Fibonacci Quaternions, The Fibonacci Quarterly, 7 (3), 225–229.
- Iyer, M. R. (1969). Some Results on Fibonacci Quaternions, The Fibonacci Quarterly, 7, 201–210.
- Koshy, T. (2001). Fibonacci and Lucas Numbers with Applications, John Wiley and Sons, Proc., New York-Toronto.
- Majernik, V. (2006). Quaternion formulation of the Galilean space-time transformation, Acta Phy. Slovaca, 56 (1), 9–14.
- Majernik, V. (1996). Multicomponent number systems, Acta Physica. Polonica A, 90 (3), 491–498.
- Messelmi, F. (2015). Dual complex numbers and their holomorphic functions, working paper or preprint (Jan. 2015).
- Motter, A. E., & Rosa, A. F. (1998). Hyperbolic calculus, Adv. Appl. Clifford Algebras, 8 (1), 109–128.
- Nurkan, K. S., & Güven, A. I. (2015). Dual Fibonacci Quaternions, Adv. Appl. Clifford Algebras, 25 (2), 403–414.
- Nurkan, K. S., & Güven, A. I. (2015). A New Approach to Fibonacci, Lucas numbers and dual vectors, Adv. Appl. Clifford Algebras, 25 (3), 577–590.
- Pennestri, E., & Stefanelli, R. (2007). Linear algebra and numerical algorithms using dual numbers. Multibody Syst, 18 (3), 323–344.
- Stakhov, A. P., & Tkachenko, I. S. (2005). The golden shofar, Chaos Solitons & Fractals, 26 (3), 677–684.
- Stakhov, A. P., & Tkachenko, I. S. (1993). Hyperbolic Fibonacci trigonometry, Reports of the National Academy of Sciences of Ukraine, 208 (7), 9–14.
- Vajda, S. (1989). Fibonacci and Lucas Numbers, and the Golden Section, Ellis Horwood Limited Publ., England.
- Verner, E., & Hoggatt, Jr. (1969). Fibonacci and Lucas Numbers. The Fibonacci
Association. - Ollerton, R. L., & Shannon, A. G. (1992). An extension of circular and hyperbolic functions, International Journal of Mathematical Education in Science and Technology, 23 (4), 611–620.
Related papers
Cite this paper
Torunbalcı Aydın, F. (2020). Circular-hyperbolic Fibonacci quaternions. Notes on Number Theory and Discrete Mathematics, 26 (2), 167-176, DOI: 10.7546/nntdm.2020.26.2.167-176.