Sumit Kumar Jha
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 2, Pages 148–151
DOI: 10.7546/nntdm.2020.26.2.148-151
Full paper (PDF, 129 Kb)
Details
Authors and affiliations
Sumit Kumar Jha ![]()
International Institute of Information Technology
Hyderabad-500 032, India
Abstract
Let
denote the Bernoulli numbers, and
denote the Stirling numbers of the second kind. We prove the following explicit formula
![Rendered by QuickLaTeX.com \[B_{r+1}=\sum_{k=0}^{r}\frac{(-1)^{k-1}\, k!\, S(r,k)}{(k+1)(k+2)}.\]](https://nntdm.net/wp-content/ql-cache/quicklatex.com-dd0c9352443a91272c0fbe176130c0f9_l3.png)
To the best of our knowledge, the formula is new.
Keywords
- Bernoulli numbers
- Stirling numbers of the second kind
- Riemann zeta function
- Polylogarithm function
2010 Mathematics Subject Classification
- 11B68
References
- Fekih-Ahmed, L. (2012). On some explicit formulas for Bernoulli numbers and polynomials, preprint. Available online at: https://arxiv.org/abs/1106.5247.
- Brychkov, Y. A., Marichev, O. I., & Savischenko, N. A. (2019). Handbook of Mellin Transforms, CRC Press, Boca Raton, FL.
- Gould, H. W. (1972). Explicit formulas for Bernoulli numbers, Amer. Math. Monthly, 79 (1), 44–51.
- Guo, B. N., Mező, I., & Qi, F. (2016). An explicit formula for the Bernoulli polynomials in terms of the r-Stirling numbers of the second kind, Rocky Mountain J. Math., 46 (6), 1919–1923.
- Guo, B. N., & Qi, F. (2014). Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math., 255, 568–579.
- Guo, B. N., & Qi, F. (2015). An explicit formula for Bernoulli numbers in terms of Stirling numbers of the second kind, J. Anal. Number Theory 3 (1), 27–30.
- Jha, S. K. (2019). A congruence for the number of alternating permutations, preprint. Available at https://osf.io/yfz7h.
- Jha, S. K. (2019). A new explicit formula for Bernoulli numbers involving the Euler number, Mosc. J. Comb. Number Theory, 8 (4), 385–387.
- Jha, S. K. (2020). Two new explicit formulas for the Bernoulli numbers, Integers, 20, Article No. A21, 5 pp.
- Jha, S. K. (2020). Two new explicit formulas for the even-indexed Bernoulli numbers, J. Integer Seq., 23 (2), Article No. 20.2.6.
- Jha, S. K. (2020). An explicit formula for the Bernoulli polynomials in terms of the Stirling numbers of the second kind, preprint. Available online at: https://osf.io/n832v.
- Landsburg, S. E. (2009). Stirling numbers and polylogarithms, preprint. Available online at: http://www.landsburg.com/query.pdf.
- Qi, F., & Guo, B. N. (2014). Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, Analysis (Berlin), 34 (3), 311–317.
- Quaintance, J., & Gould, H. W. (2015). Combinatorial Identities For Stirling Numbers: The Unpublished Notes of H. W. Gould, World Scientific.
Related papers
Cite this paper
Jha, S. K. (2020). A new explicit formula for the Bernoulli numbers in terms of the Stirling numbers of the second kind. Notes on Number Theory and Discrete Mathematics, 26 (2), 148-151, DOI: 10.7546/nntdm.2020.26.2.148-151.
