Ahmet Tekcan and Alper Erdem
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 1, Pages 45–58
DOI: 10.7546/nntdm.2020.26.1.45-58
Full paper (PDF, 217 Kb)
Details
Authors and affiliations
Ahmet Tekcan ![]()
Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey
Alper Erdem ![]()
Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey
Abstract
In this work, we determine the general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing numbers by solving the Pell equation 2x2 − y2 = 2t2 − 1 for some fixed integer t ≥ 1.
Keywords
- Cobalancing numbers
- Cobalancers
- t-cobalancers
- t-cobalancing numbers
- Lucas t-cobalancing numbers
- Pell equation
2010 Mathematics Subject Classification
- 11B37
- 11B39
- 11D09
- 11D79
References
- Barbeau, E. J. (2003). Pell’s Equation. Springer–Verlag New York, Inc.
- Behera, A. & Panda, G. K. (1999). On the Square Roots of Triangular Numbers. The Fibonacci Quarterly, 37(2), 98–105.
- Flath, D. E (1989). Introduction to Number Theory. Wiley.
- Frontczak, R. (2018). Sums of Balancing and Lucas-Balancing Numbers with Binomial Coefficients. Int. J. Math. Anal., 12, 585–594.
- Frontczak, R. (2019). On Balancing Polynomials. Appl. Math. Sci., 13, 57–66.
- Frontczak, R. (2019). Identities for Generalized Balancing Numbers. Notes on Number Theory and Discrete Mathematics, 25 (2), 169–180.
- Gözeri, G. K., Özkoc¸, A. & Tekcan, A. (2017). Some Algebraic Relations on Balancing Numbers. Utilitas Mathematica, 103, 217–236.
- Komatsu, T. & Panda, G. K. (2018). On Several Kinds of Sums of Balancing Numbers. Preprint, arXiv:1608.05918v3 [math.NT] 11 Jan 2018.
- Kovacs, T., Liptai, K. & Olajos, P. (2010). On (a; b)-Balancing Numbers. Publ. Math. Deb., 77 (3–4), 485–498.
- Liptai, K., Luca, F., Pinter, A. & Szalay, L. (2009). Generalized Balancing Numbers. Indag. Mathem. N.S., 20 (1), 87–100.
- Liptai, K. (2004). Fibonacci Balancing Numbers. The Fibonacci Quarterly, 42 (4), 330–340.
- Liptai, K. (2006). Lucas Balancing Numbers. Acta Math. Univ. Ostrav., 14, 43–47.
- Mollin, R. A. (1996). Quadratics. CRS Press, Boca Raton, New York, London, Tokyo.
- Olajos, P. (2010). Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Annales Mathematicae et Informaticae, 37, 125–138.
- Panda, G. K. & Ray, P. K. (2011). Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers. Bul. of Inst. of Math. Acad. Sinica, 6 (1), 41–72.
- Panda, G. K. & Ray, P. K. (2005). Cobalancing Numbers and Cobalancers. Int. J. Math. Math. Sci., 8, 1189–1200.
- Panda, G. K. & Panda, A. K. (2015). Almost Balancing Numbers. Jour. of the Indian Math. Soc., 82 (3–4), 147–156.
- Panda, G. K., Komatsu, T. & Davala, R. K. (2018). Reciprocal Sums of Sequences Involving Balancing and Lucas-balancing Numbers. Math. Reports, 20 (70), 201–214.
- Panda, A. K. (2017). Some Variants of the Balancing Sequences. Ph.D. dissertation, National Institute of Technology Rourkela, India.
- Patel, B. K., Irmak, N. & Ray, P. K. (2018). Incomplete Balancing and Lucas-balancing Numbers. Mathematical Reports, 20 (70), 59–72.
- Ray, P. K. (2009). Balancing and Cobalancing Numbers. Ph.D. dissertation, Department of Mathematics, National Institute of Technology, Rourkela, India.
- Ray, P. K. (2015). Balancing and Lucas-balancing Sums by Matrix Methods. Math. Reports, 17 (67), 225–233.
- Szalay, L. (2007). On the Resolution of Simultaneous Pell Equations. Ann. Math. Inform., 34, 77–87.
- Tekcan, A., Özkoc¸, A. & Özbek, M. E. (2016). Some Algebraic Relations on Integer Sequences Involving Oblong and Balancing Numbers. Ars Combinatoria, 128, 11–31.
- Tekcan, A. (2019). Almost Balancing, Triangular and Square Triangular Numbers. Notes on Number Theory and Discrete Mathematics, 25 (1), 108–121.
- Tengely, S. (2013). Balancing Numbers which are Products of Consecutive Integers. Publ. Math. Deb., 83 (1–2), 197–205.
Related papers
- Tekcan, A., & Türkmen, E. Z. (2023). Almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers. Notes on Number Theory and Discrete Mathematics, 29(4), 682-694.
- Tekcan, A., & Akgüç, E. (2025). Almost neo cobalancing numbers. Notes on Number Theory and Discrete Mathematics, 31(1), 113-126.
Cite this paper
Tekcan, A., & Erdem, A. (2020). t-cobalancing numbers and t-cobalancers. Notes on Number Theory and Discrete Mathematics, 26(1), 45-58, DOI: 10.7546/nntdm.2020.26.1.45-58.
