t-cobalancing numbers and t-cobalancers

Ahmet Tekcan and Alper Erdem
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 26, 2020, Number 1, Pages 45–58
DOI: 10.7546/nntdm.2020.26.1.45-58
Full paper (PDF, 217 Kb)

Details

Authors and affiliations

Ahmet Tekcan
Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey

Alper Erdem
Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey

Abstract

In this work, we determine the general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing numbers by solving the Pell equation 2x2 − y2 = 2t2 − 1 for some fixed integer t ≥ 1.

Keywords

  • Cobalancing numbers
  • Cobalancers
  • t-cobalancers
  • t-cobalancing numbers
  • Lucas t-cobalancing numbers
  • Pell equation

2010 Mathematics Subject Classification

  • 11B37
  • 11B39
  • 11D09
  • 11D79

References

  1. Barbeau, E. J. (2003). Pell’s Equation. Springer–Verlag New York, Inc.
  2. Behera, A. & Panda, G. K. (1999). On the Square Roots of Triangular Numbers. The Fibonacci Quarterly, 37(2), 98–105.
  3. Flath, D. E (1989). Introduction to Number Theory. Wiley.
  4. Frontczak, R. (2018). Sums of Balancing and Lucas-Balancing Numbers with Binomial Coefficients. Int. J. Math. Anal., 12, 585–594.
  5. Frontczak, R. (2019). On Balancing Polynomials. Appl. Math. Sci., 13, 57–66.
  6. Frontczak, R. (2019). Identities for Generalized Balancing Numbers. Notes on Number Theory and Discrete Mathematics, 25 (2), 169–180.
  7. Gözeri, G. K., Özkoc¸, A. & Tekcan, A. (2017). Some Algebraic Relations on Balancing Numbers. Utilitas Mathematica, 103, 217–236.
  8. Komatsu, T. & Panda, G. K. (2018). On Several Kinds of Sums of Balancing Numbers. Preprint, arXiv:1608.05918v3 [math.NT] 11 Jan 2018.
  9. Kovacs, T., Liptai, K. & Olajos, P. (2010). On (a; b)-Balancing Numbers. Publ. Math. Deb., 77 (3–4), 485–498.
  10. Liptai, K., Luca, F., Pinter, A. & Szalay, L. (2009). Generalized Balancing Numbers. Indag. Mathem. N.S., 20 (1), 87–100.
  11. Liptai, K. (2004). Fibonacci Balancing Numbers. The Fibonacci Quarterly, 42 (4), 330–340.
  12. Liptai, K. (2006). Lucas Balancing Numbers. Acta Math. Univ. Ostrav., 14, 43–47.
  13. Mollin, R. A. (1996). Quadratics. CRS Press, Boca Raton, New York, London, Tokyo.
  14. Olajos, P. (2010). Properties of Balancing, Cobalancing and Generalized Balancing Numbers. Annales Mathematicae et Informaticae, 37, 125–138.
  15. Panda, G. K. & Ray, P. K. (2011). Some Links of Balancing and Cobalancing Numbers with Pell and Associated Pell Numbers. Bul. of Inst. of Math. Acad. Sinica, 6 (1), 41–72.
  16. Panda, G. K. & Ray, P. K. (2005). Cobalancing Numbers and Cobalancers. Int. J. Math. Math. Sci., 8, 1189–1200.
  17. Panda, G. K. & Panda, A. K. (2015). Almost Balancing Numbers. Jour. of the Indian Math. Soc., 82 (3–4), 147–156.
  18. Panda, G. K., Komatsu, T. & Davala, R. K. (2018). Reciprocal Sums of Sequences Involving Balancing and Lucas-balancing Numbers. Math. Reports, 20 (70), 201–214.
  19. Panda, A. K. (2017). Some Variants of the Balancing Sequences. Ph.D. dissertation, National Institute of Technology Rourkela, India.
  20. Patel, B. K., Irmak, N. & Ray, P. K. (2018). Incomplete Balancing and Lucas-balancing Numbers. Mathematical Reports, 20 (70), 59–72.
  21. Ray, P. K. (2009). Balancing and Cobalancing Numbers. Ph.D. dissertation, Department of Mathematics, National Institute of Technology, Rourkela, India.
  22. Ray, P. K. (2015). Balancing and Lucas-balancing Sums by Matrix Methods. Math. Reports, 17 (67), 225–233.
  23. Szalay, L. (2007). On the Resolution of Simultaneous Pell Equations. Ann. Math. Inform., 34, 77–87.
  24. Tekcan, A., Özkoc¸, A. & Özbek, M. E. (2016). Some Algebraic Relations on Integer Sequences Involving Oblong and Balancing Numbers. Ars Combinatoria, 128, 11–31.
  25. Tekcan, A. (2019). Almost Balancing, Triangular and Square Triangular Numbers. Notes on Number Theory and Discrete Mathematics, 25 (1), 108–121.
  26. Tengely, S. (2013). Balancing Numbers which are Products of Consecutive Integers. Publ. Math. Deb., 83 (1–2), 197–205.

Related papers

Cite this paper

Tekcan, A., & Erdem, A. (2020). t-cobalancing numbers and t-cobalancers. Notes on Number Theory and Discrete Mathematics, 26(1), 45-58, DOI: 10.7546/nntdm.2020.26.1.45-58.

Comments are closed.