t-cobalancing numbers and t-cobalancers

Ahmet Tekcan¹ and Alper Erdem²

¹ Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey
e-mail: tekcan@uludag.edu.tr

² Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey
e-mail: alper.erdem@outlook.com

Abstract: In this work, we determine the general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing numbers by solving the Pell equation $2x^2 - y^2 = 2t^2 - 1$ for some fixed integer $t \geq 1$.

Keywords: Cobalancing numbers, Cobalancers, t-cobalancers, t-cobalancing numbers, Lucas t-cobalancing numbers, Pell equation.

2010 Mathematics Subject Classification: 11B37, 11B39, 11D09, 11D79.

1 Introduction

A positive integer n is called a balancing number [2] if the Diophantine equation

$$1 + 2 + \cdots + (n - 1) = (n + 1) + (n + 2) + \cdots + (n + r)$$

(1)

holds for some positive integer r which is called balancer corresponding to n. If n is a balancing number with balancer r, then from (1)

$$n^2 = \frac{(n + r)(n + r + 1)}{2} \quad \text{and} \quad r = \frac{-2n - 1 + \sqrt{8n^2 + 1}}{2}. \quad (2)$$

Hence from (2) we get that n is a balancing number if and only if n^2 is a triangular number (triangular numbers denoted by T_n are the numbers of the form $T_n = \frac{n(n+1)}{2}$ for $n \geq 1$) and
$8n^2 + 1$ is a perfect square. Though the definition of balancing numbers suggests that no balancing number should be less than 2. But from (2), $8(0)^2 + 1 = 1$ and $8(1)^2 + 1 = 3^2$ are perfect squares. So we accept 0 and 1 to be balancing numbers. A balancing number is denoted by B_n and hence $B_0 = 0, B_1 = 1, B_2 = 6$ and $B_{n+1} = 6B_n - B_{n-1}$ for $n \geq 2$.

Later Panda and Ray [16] defined that a positive integer n is called a cobalancing number if the Diophantine equation

$$1 + 2 + \cdots + n = (n + 1) + (n + 2) + \cdots + (n + r)$$

holds for some positive integer r which is called cobalancer corresponding to n. If n is a cobalancing number with cobalancer r, then from (3)

$$n(n + 1) = \frac{(n + r)(n + r + 1)}{2} \quad \text{and} \quad r = -2n - 1 + \sqrt{8n^2 + 8n + 1}.$$

Hence from (4) we get that n is a cobalancing number if and only if $n(n + 1)$ is a triangular number and $8n^2 + 8n + 1$ is a perfect square. Since $8(0)^2 + 8(0) + 1 = 1$ is a perfect square, we accept 0 to be a cobalancing number, just like Behera and Panda accepted 0, 1 balancing numbers.

A cobalancing number is denoted by b_n and $b_0 = b_1 = 0, b_2 = 2$ and $b_{n+1} = 6b_n - b_{n-1} + 2$ for $n \geq 2$.

It is clear from (1) and (3) that every balancing number is a cobalancer and every cobalancing number is a balancer, that is, $B_n = r_{n+1}$ and $R_n = b_n$ for $n \geq 1$, where R_n is the n-th balancer and r_n is the n-th cobalancer. Since $R_n = b_n$, we get from (1) that

$$b_n = -2B_n - 1 + \sqrt{8B_n^2 + 1} \quad \text{and} \quad B_n = \frac{2b_n + 1 + \sqrt{8b_n^2 + 8b_n + 1}}{2}.$$

Thus from (5), we see that B_n is a balancing number if and only if $8B_n^2 + 1$ is a perfect square and b_n is a cobalancing number if and only if $8b_n^2 + 8b_n + 1$ is a perfect square. Thus

$$C_n = \sqrt{8B_n^2 + 1} \quad \text{and} \quad c_n = \sqrt{8b_n^2 + 8b_n + 1}$$

are integers which are called the n-th Lucas-balancing number and n-th Lucas-cobalancing number, respectively.

Binet formulas for all balancing numbers are $B_n = \frac{\alpha^{2n} - \beta^{2n}}{4\sqrt{2}}, b_n = \frac{\alpha^{2n-1} - \beta^{2n-1}}{4\sqrt{2}} - \frac{1}{2}, C_n = \frac{\alpha^{2n} + \beta^{2n}}{2}$ and $c_n = \frac{\alpha^{2n-1} + \beta^{2n-1}}{2}$ for $n \geq 1$, where $\alpha = 1 + \sqrt{2}$ and $\beta = 1 - \sqrt{2}$ which are the roots of the characteristic equation for Pell numbers P_n (see also [6–8, 14, 15, 19, 21, 24]).

Balancing numbers and their generalizations have been investigated by several authors from many aspects. In [11], Liptai proved that there is no Fibonacci balancing number except 1 and in [12], he proved that there is no Lucas balancing number. In [23], Szalay considered the same problem and obtained some nice results by a different method. In [9], Kovács, Liptai and Olajos extended the concept of balancing numbers to the (a, b)-balancing numbers defined as follows: Let $a > 0$ and $b \geq 0$ be coprime integers. If

$$(a + b) + \cdots + (a(n - 1) + b) = (a(n + 1) + b) + \cdots + (a(n + r) + b)$$

46
for some positive integers \(n \) and \(r \), then \(an + b \) is an \((a, b)\)-balancing number. The sequence of \((a, b)\)-balancing numbers is denoted by \(B_m^{(a,b)} \) for \(m \geq 1 \). In [10], Liptai, Luca, Pint’er and Szalay generalized the notion of balancing numbers to numbers defined as follows: Let \(y, k, l \in \mathbb{Z}^+ \) such that \(y \geq 4 \). Then a positive integer \(x \) with \(x \leq y - 2 \) is called a \((k, l)\)-power numerical center for \(y \) if
\[
1^k + \cdots + (x - 1)^k = (x + 1)^l + \cdots + (y - 1)^l.
\]
They studied the number of solutions of the equation above and proved several effective and ineffective finiteness results for \((k, l)\)-power numerical centers. For positive integers \(k, x \), let
\[
\Pi_k(x) = x(x + 1)\ldots(x + k - 1).
\]
Then it was proved in [9] that the equation \(B_m = \Pi_k(x) \) for a fixed integer \(k \geq 2 \) has only infinitely many solutions and for \(k \in \{2,3,4\} \) all solutions were determined. In [26], Tengely considered the case \(k = 5 \), that is, \(B_m = x(x + 1)(x + 2)(x + 3)(x + 4) \) and proved that this Diophantine equation has no solution for \(m \geq 0 \) and \(x \in \mathbb{Z} \). In [4], Frontczak considered the sums of balancing and Lucas-balancing numbers with binomial coefficients and in [5] he considered balancing polynomials. In [18], Panda, Komatsu and Davala considered the reciprocal sums of sequences involving balancing and Lucas-balancing numbers. In [20], Patel, Irmak and Ray considered incomplete balancing and Lucas-balancing numbers and in [22], Ray considered the sums of balancing and Lucas-balancing numbers by matrix methods. In [17], Panda and Panda defined almost balancing numbers. A natural number \(n \) is called an almost balancing number if the Diophantine equation
\[
||(n + 1) + (n + 2) + \cdots + (n + r)|| - [1 + 2 + \cdots + (n - 1)] = 1
\]
holds for some positive integer \(r \) which is called the almost balancer. In [25], the first author derived some new results on almost balancing numbers, triangular numbers and square triangular numbers.

Now let \(t \geq 1 \) be an integer. By considering (3), a positive integer \(n \) is called a \(t \)-cobalancing number if the Diophantine equation
\[
1 + 2 + \cdots + n = (n + 1 + t) + (n + 2 + t) + \cdots + (n + r + t)
\]
holds for some positive integer \(r \) which is called \(t \)-cobalancer corresponding to \(n \).

Let \(b_t^n \) denote the \(n \)-th \(t \)-cobalancing number and let \(r_t^n \) denote the \(n \)-th \(t \)-cobalancer. Then from (7), we get
\[
r_t^n = \frac{-2b_t^n - 2t - 1 + \sqrt{8(b_t^n)^2 + 8(t + 1)b_t^n + (2t + 1)^2}}{2}
\]
and
\[
b_t^n = \frac{2r_t^n - 1 + \sqrt{8(r_t^n)^2 + 8tr_t^n + 1}}{2}.
\]
Thus from (8), we notice that \(b_t^n \) is the \(n \)-th \(t \)-cobalancing number if and only if
\[
8(b_t^n)^2 + 8(t + 1)b_t^n + (2t + 1)^2
\]
is a perfect square. So
\[c_n^t = \sqrt{8(b_n^t)^2 + 8(t + 1)b_n^t + (2t + 1)^2} \] (10)
is an integer which is called the \(n \)-th Lucas \(t \)-cobalancing number.

In order to determine the general terms of \(t \)-cobalancers, \(t \)-cobalancing numbers and Lucas \(t \)-cobalancing numbers, we have to determine the set of all (positive) integer solutions of the Pell equation ([1, 3, 13])
\[2x^2 - y^2 = 2t^2 - 1. \] (11)

From (9), we see that \(r_n^t \) is a \(t \)-cobalancer if and only if \(8(r_n^t)^2 + 8r_n^t + 1 \) is a perfect square. So we set
\[8(r_n^t)^2 + 8r_n^t + 1 = y^2 \] (12)
for some integer \(y \geq 1 \). Then
\[2(2r_n^t + t)^2 - y^2 = 2t^2 - 1 \] and putting
\[x = 2r_n^t + t, \] (13)
we get the Pell equation in (11). To get the set of all integer solutions of (11), we need some notations.

Let \(F(x, y) = ax^2 + bxy + cy^2 \) be an indefinite integral quadratic form [3] of discriminant \(\Delta = b^2 - 4ac \) and let \(m \) be any integer. Then the \(\Delta \)-order \(O_\Delta \) is defined for nonsquare discriminant \(\Delta \) to be the ring \(O_\Delta = \{ x + y\rho_\Delta : x, y \in \mathbb{Z} \} \), where \(\rho_\Delta = \sqrt{\frac{\Delta}{4}} \) if \(\Delta \equiv 0 \pmod{4} \) or \(1 + \sqrt{\frac{\Delta}{2}} \) if \(\Delta \equiv 1 \pmod{4} \). So \(O_\Delta \) is a subring of \(\mathbb{Q}(\sqrt{\Delta}) = \{ x + y\sqrt{\Delta} : x, y \in \mathbb{Q} \} \). The unit group \(O_\Delta^* \) is defined to be the group of units of the ring \(O_\Delta \). We can rewrite \(F \) to be
\[F(x, y) = \frac{(xa + y\frac{b+\sqrt{\Delta}}{2})(xa + y\frac{b-\sqrt{\Delta}}{2})}{a}. \]

So the module \(M_F \) of \(F \) is
\[M_F = \{ xa + y\frac{b+\sqrt{\Delta}}{2} : x, y \in \mathbb{Z} \} \subset \mathbb{Q}(\sqrt{\Delta}). \]

Therefore, we get
\[(u + v\rho_\Delta)(xa + y\frac{b+\sqrt{\Delta}}{2}) = x'a + y'b + \frac{\sqrt{\Delta}}{2}, \]
where
\[
[x' \ y'] = \begin{cases}
\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} u - \frac{b}{2}v & av \\ -cv & u + \frac{b}{2}v \end{bmatrix} & \text{if } \Delta \equiv 0 \pmod{4}, \\
\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} u + \frac{b}{2}v & av \\ -cv & u + \frac{1+b}{2}v \end{bmatrix} & \text{if } \Delta \equiv 1 \pmod{4}.
\end{cases}
\] (14)

So there is a bijection \(\Psi : \{ (x, y) : F(x, y) = m \} \to \{ \gamma \in M_F : N(\gamma) = am \} \) for solving \(F(x, y) = m \). The action of \(O_{\Delta,1}^* = \{ \alpha \in O_\Delta^* : N(\alpha) = 1 \} \) on \(\{ (x, y) : F(x, y) = m \} \) of integral solutions of the equation \(F(x, y) = m \) is most interesting when \(\Delta \) is a positive nonsquare since \(O_{\Delta,1}^* \) is infinite. Therefore, the orbit of each solution will be infinite and so the set \(\{ (x, y) : \} \).
\(F(x, y) = m\) is either empty or infinite. Since \(O_{\Delta, 1}\) can be explicitly determined, the set \(\{(x, y) : F(x, y) = m\}\) is satisfactorily described by the representation of such a list, called a set of representatives of the orbits. Let \(\epsilon_\Delta > 1\) be the smallest unit of \(O_\Delta\) and let \(\tau_\Delta = \epsilon_\Delta\) if \(N(\epsilon_\Delta) = 1\) or \(\epsilon_\Delta^2\) if \(N(\epsilon_\Delta) = -1\). Then every \(O_{\Delta, 1}\) orbit of integral solutions of \(F(x, y) = m\) contains a solution \((x, y) \in \mathbb{Z} \times \mathbb{Z}\) such that \(0 \leq y \leq U\), where

\[
U = \left\{ \left| \frac{am\tau_\Delta}{\Delta} \right|^\frac{1}{2} \left(1 - \frac{1}{\tau_\Delta} \right) \text{ if } am > 0 \right. \\
\left. \left| \frac{am\tau_\Delta}{\Delta} \right|^\frac{1}{2} \left(1 + \frac{1}{\tau_\Delta} \right) \text{ if } am < 0. \right.
\]

So for finding the a set of representatives of the \(O_{\Delta, 1}\) orbits of integral solutions of \(F(x, y) = m\), we must find for each integer \(y_0\) such that \(0 \leq y_0 \leq U\), all integers \(x_0\) that satisfy \(F(x_0, y_0) = m\). If \(F(x_0, y_0) = m\), then

\[
ax_0^2 + bx_0y_0 + cy_0^2 = m \iff \Delta y_0^2 + 4am = (2ax_0 + by_0)^2
\]

and hence

\[
x_0 = \frac{-by_0 \pm \sqrt{\Delta y_0^2 + 4am}}{2a}.
\]

Consequently, we get the set of representatives \(\text{Rep} = \{[x_0 \ y_0]\}\). Thus for the matrix \(M\) defined in (14), the set of all integer solutions of \(F(x, y) = m\) is

\[
\{\pm(x, y) : [x \ y] = [x_0 \ y_0]M^n, n \in \mathbb{Z}\}.
\]

2 Main results

For the set of all integer solutions of (11), the indefinite form \(F(x, y) = 2x^2 - y^2\) of discriminant \(\Delta = 8\). So \(\tau_8 = 3 + 2\sqrt{2}\) and

\[
M = \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix}
\]

by (14). In order to determine the set of all integer solutions of (11), we have to consider our problem in three cases: \(t = 1, 2t^2 - 1\) is a perfect square or not a perfect square for \(t \geq 2\).

2.1 Case 1: \(t = 1\)

Theorem 2.1. If \(t = 1\), then

1. The set of all integer solutions of \(2x^2 - y^2 = 1\) is \(\{-2B_n + C_n, 4B_n - C_n\} : n \geq 1\}.

2. The general terms of 1-cobalancers, 1-cobalancing numbers and Lucas 1-cobalancing numbers are

\[
r_n^1 = b_{n+1}, \ b_n^1 = B_{n+1} - 1 \text{ and } c_n^1 = C_{n+1}
\]

for \(n \geq 1\).
Proof. (1) Let $t = 1$. Then for the Pell equation $2x^2 - y^2 = 1$, in the range
\[
0 \leq y_0 \leq U = \left| \frac{amr_t}{\Delta} \right| \left(1 - \frac{1}{r_t} \right) = \left| \frac{2(1)(3 + 2\sqrt{2})}{8} \right| \left(\frac{2 + 2\sqrt{2}}{3 + 2\sqrt{2}} \right) = 1,
\]
$\Delta y_0^2 + 4am = 8y_0^2$ is a perfect square only for $y_0 = 1$ and hence
\[
x_0 = \frac{-by_0 \pm \sqrt{\Delta y_0^2 + 4am}}{2a} = \pm \sqrt{\frac{1}{4}8(1)^2 + 8} = \pm 1.
\]
So the set of representatives is $\text{Rep} = \{ [\pm 1 \ 1] \}$ and in this case $[1 - 1]M^n$ (where M is defined in (15)) generates all integer solutions (x_n, y_n) for $n \geq 1$. Since the n-th power of M is
\[
M^n = \begin{bmatrix} C_n & 4B_n \\ 2B_n & C_n \end{bmatrix}
\]
for $n \geq 1$, we conclude that the set of all integer solutions is $\{(-2B_n + C_n, 4B_n - C_n) : n \geq 1 \}$.

(2) Recall that $x = 2r_t^n + t$ by (13). So from (1), we easily deduce that
\[
r_t^n = \frac{-2B_{n+1} + C_{n+1} - 1}{2} = \frac{-2(\frac{\alpha^{2n+2} - \beta^{2n+2}}{2\sqrt{2}} + \frac{\alpha^{2n+2} + \beta^{2n+2}}{4\sqrt{2}} - 1}{2} = \alpha^{2n+2} \left(\frac{1}{4\sqrt{2}} + \frac{1}{4} \right) + \beta^{2n+2} \left(\frac{1}{4\sqrt{2}} + \frac{1}{4} \right) - \frac{1}{2}
\]
\[
= \frac{\alpha^{2n+2} + \beta^{2n+2} (\sqrt{2} + 1) - 1}{2} = \frac{\alpha^{2n+1} - \beta^{2n+1} - \frac{1}{2}}{2} = b_{n+1}.
\]
Note that $\sqrt{8(r_t^n)^2 + 8tr_n^n + 1} = y_n$ by (12). So from (9), we get
\[
b_t^n = \frac{2r_t^n - 1 + \sqrt{8(r_t^n)^2 + 8tr_t^n + 1}}{2} = \frac{2b_{n+1} + 4B_{n+1} - C_{n+1}}{2}
\]
\[
= \frac{2(\frac{\alpha^{2n+1} - \beta^{2n+1}}{4\sqrt{2}} - \frac{1}{2} - 1 + 4(\frac{\alpha^{2n+2} - \beta^{2n+2}}{4\sqrt{2}} - \frac{\alpha^{2n+2} + \beta^{2n+2}}{4\sqrt{2}})}{2}
\]
\[
= \frac{\alpha^{2n+1} (\frac{1}{2\sqrt{2}} + \frac{\alpha}{\sqrt{2}} - \frac{\beta}{\sqrt{2}})}{4\sqrt{2}} + \beta^{2n+1} (\frac{1}{2\sqrt{2}} - \frac{\beta}{\sqrt{2}} - \frac{\beta}{2}) - 1
\]
\[
= \frac{\alpha^{2n+2} - \beta^{2n+2}}{4\sqrt{2}} - 1 = B_{n+1} - 1
\]
and from (10), we conclude that
\[
c_t^n = \sqrt{8(B_{n+1} - 1)^2 + 16(B_{n+1} - 1) + 9} = \sqrt{8B_{n+1}^2 + 1} = C_{n+1}
\]
as we wanted. □
2.2 Case 2: $2t^2 - 1$ is a perfect square

In this section, we assume that $2t^2 - 1$ is a perfect square for $t \geq 2$. Before considering our problem, we can give the following theorem.

Theorem 2.2. The quadratic equation $2t^2 - 1 = h^2$ is satisfied for $(t_n, h_n) = (P_{2n-1}, c_n)$ for $n \geq 1$.

Proof. Let $2t^2 - 1 = h^2$ for some positive integer h. Then we get the Pell equation $2t^2 - h^2 = 1$. In this case the set of representatives is $\text{Rep} = \{[\pm 1 \ 1] \}$. M_n generates all integer solutions (t_n, h_n) for $n \geq 1$. Thus $2t^2 - 1 = h^2$ is satisfied for $(t_n, h_n) = (-2B_n + C_n, 4B_n - C_n)$ for $n \geq 1$. On the other hand it can be easily seen that

$$-2B_n + C_n = P_{2n-1} \quad \text{and} \quad 4B_n - C_n = c_n,$$

so the quadratic equation $2t^2 - 1 = h^2$ is satisfied for $(t_n, h_n) = (P_{2n-1}, c_n)$ for $n \geq 1$. Indeed, since $P_n = \frac{a_n - \beta^n}{2\sqrt{2}}$ and $c_n = \frac{\alpha^{2n-1} + \beta^{2n-1}}{2}$, we easily get

$$2t^2 - 1 = \frac{\alpha^{4n-2} + \beta^{4n-2} + 2(\alpha \beta)^{2n-1}}{4} = \left(\frac{\alpha^{2n-1} + \beta^{2n-1}}{2}\right)^2 = c_n^2 = h^2$$

as we claimed. \qed

From Theorem 2.2, we see that $2t^2 - 1$ is a perfect square for $t = P_{2n-1}$. Consequently, we determine the general terms of all P_{2n-1}-cobalancers, P_{2n-1}-cobalancing numbers and Lucas P_{2n-1}-cobalancing numbers for $n \geq 2$ (For $n = 1$, we have $t = P_1 = 1$ and clearly we have already considered it in the previous section). In order to determine the set of all integer solutions of (11), we have two cases: $\#\text{Rep} = 4$ or $\#\text{Rep} > 4$.

Theorem 2.3. If $\#\text{Rep} = 4$, then

1. The set of all integer solutions of (11) is

$$\{(x_{3n+1}, y_{3n+1}), (x_{3n+2}, y_{3n+2}) : n \geq 0\} \cup \{(x_{3n}, y_{3n}) : n \geq 1\},$$

where

$$(x_{3n+1}, y_{3n+1}) = (2B_n + tC_n, 4tB_n + C_n)$$

$$(x_{3n+2}, y_{3n+2}) = (2hB_n + hC_n, 4hB_n + hC_n)$$

$$(x_{3n}, y_{3n}) = (-2B_n + tC_n, 4tB_n - C_n).$$

2. The general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing numbers are

$$r_{3n}^t = \frac{2B_n + tC_n - t}{2}$$

$$r_{3n-1}^t = \frac{-2B_n + tC_n - t}{2}$$

$$b_{3n}^t = \frac{2t(B_n + b_{n+1}) + 2B_n + C_n - 1}{2}$$

$$b_{3n-1}^t = \frac{2t(B_n + b_{n+1}) - 2B_n - C_n - 1}{2}$$

51
Thus the set of all integer solutions is
\[
\begin{align*}
\{ & 8(b_{3n})^2 + 8(t + 1)b_{3n} + (2t + 1)^2 \\
\{ & 8(b_{3n-1})^2 + 8(t + 1)b_{3n-1} + (2t + 1)^2
\end{align*}
\]
for \(n \geq 1 \) and

\[
\begin{align*}
r_{3n+1}^t &= \frac{2hB_n + hC_n - t}{2} \\
b_{3n+1}^t &= \frac{2hB_{n+1} - t - 1}{2} \\
c_{3n+1}^t &= \sqrt{8(b_{3n+1})^2 + 8(t + 1)b_{3n+1} + (2t + 1)^2}
\end{align*}
\]
for \(n \geq 0 \).

Proof. (1) If \(\#\text{Rep} = 4 \), then the set of representatives is \(\text{Rep} = \{ [\pm t, 1], [\pm h, h] \} \) and in this case

1. \([t, 1]M^n \) generates all integer solutions \((x_{3n+1}, y_{3n+1}) \) for \(n \geq 0 \),
2. \([t, -1]M^n \) generates all integer solutions \((x_{3n}, y_{3n}) \) for \(n \geq 1 \),
3. \([h, h]M^n \) generates all integer solutions \((x_{3n+2}, y_{3n+2}) \) for \(n \geq 0 \).

Thus the set of all integer solutions is \(\{(2B_n + tC_n, 4tB_n + C_n), (2hB_n + hC_n, 4hB_n + hC_n): n \geq 0 \} \cup \{(-2B_n + tC_n, 4tB_n - C_n): n \geq 1 \} \).

(2) From (1), we easily get

\[
r_{3n}^t = \frac{2B_n + tC_n - t}{2}
\]
for \(n \geq 1 \). Thus from (9), we get

\[
b_{3n}^t = \frac{2B_n + tC_n - t - 1 + 4tB_n + C_n}{2}
\]
\[
= \frac{t(4B_n + C_n - 1) + 2B_n + C_n - 1}{2}
\]
\[
= \frac{2t(B_n + b_{n+1}) + 2B_n + C_n - 1}{2}
\]
for \(n \geq 1 \) since \(4B_n + C_n - 1 = 2(B_n + b_{n+1}) \). From (10), we observe that

\[
c_{3n}^t = \sqrt{8(b_{3n})^2 + 8(t + 1)b_{3n} + (2t + 1)^2}
\]
for \(n \geq 1 \). The other cases can be proved similarly. \(\square \)

Theorem 2.4. If \(\#\text{Rep} = 2k > 4 \), then

1. The set of all integer solutions of (11) is

\[
\{(x(2k-1)n+1, y(2k-1)n+1), (x(2k-1)n+i+1, y(2k-1)n+i+1), (x(2k-1)n+k, y(2k-1)n+k): n \geq 0 \} \cup \{(x(2k-1)n, y(2k-1)n), (x(2k-1)n-i, y(2k-1)n-i): n \geq 1 \},
\]

52
where
\[
(x_{(2k-1)n+1}, y_{(2k-1)n+1}) = (2B_n + tC_n, 4tB_n + C_n)
\]
\[
(x_{(2k-1)n+i+1}, y_{(2k-1)n+i+1}) = (2t_2iB_n + t_{2i-1}C_n, 4t_{2i-1}B_n + t_2iC_n)
\]
\[
(x_{(2k-1)n+k}, y_{(2k-1)n+k}) = (2hB_n + hC_n, 4hB_n + hC_n)
\]
\[
(x_{(2k-1)n}, y_{(2k-1)n}) = (-2B_n + tC_n, 4tB_n - C_n)
\]
\[
(x_{(2k-1)n-i}, y_{(2k-1)n-i}) = (-2t_2iB_n + t_{2i-1}C_n, 4t_{2i-1}B_n - t_2iC_n).
\]

2. The general terms of \(t\)-cobalancers, \(t\)-cobalancing numbers and Lucas \(t\)-cobalancing numbers are

\[
r^t_{(2k-1)n} = \frac{2B_n + tC_n - t}{2}
\]
\[
r^t_{(2k-1)n-1} = \frac{-2B_n + tC_n - t}{2}
\]
\[
r^t_{(2k-1)n-i-1} = \frac{-2t_2iB_n + t_{2i-1}C_n - t}{2}
\]
\[
b^t_{(2k-1)n} = \frac{2t(B_n + b_{n+1}) + 2B_n + C_n - 1}{2}
\]
\[
b^t_{(2k-1)n-1} = \frac{2t(B_n + b_{n+1}) - 2B_n - C_n - 1}{2}
\]
\[
b^t_{(2k-1)n-i-1} = \frac{(-2t_2i + 4t_{2i-1})B_n + (t_{2i-1} - t_2i)C_n - t - 1}{2}
\]
\[
c^t_{(2k-1)n} = \sqrt{8(b^t_{(2k-1)n})^2 + 8(t + 1)b^t_{(2k-1)n} + (2t + 1)^2}
\]
\[
c^t_{(2k-1)n-1} = \sqrt{8(b^t_{(2k-1)n-1})^2 + 8(t + 1)b^t_{(2k-1)n-1} + (2t + 1)^2}
\]
\[
c^t_{(2k-1)n-i-1} = \sqrt{8(b^t_{(2k-1)n-i-1})^2 + 8(t + 1)b^t_{(2k-1)n-i-1} + (2t + 1)^2}
\]

for \(n \geq 1\) and

\[
r^t_{(2k-1)n+i} = \frac{2t_2iB_n + t_{2i-1}C_n - t}{2}
\]
\[
r^t_{(2k-1)n+k-1} = \frac{2hB_n + hC_n - t}{2}
\]
\[
b^t_{(2k-1)n+i} = \frac{(2t_2i + 4t_{2i-1})B_n + (t_{2i-1} + t_2i)C_n - t - 1}{2}
\]
\[
b^t_{(2k-1)n+k-1} = \frac{6hB_n + 2hC_n - t - 1}{2}
\]
\[
c^t_{(2k-1)n+i} = \sqrt{8(b^t_{(2k-1)n+i})^2 + 8(t + 1)b^t_{(2k-1)n+i} + (2t + 1)^2}
\]
\[
c^t_{(2k-1)n+k-1} = \sqrt{8(b^t_{(2k-1)n+k-1})^2 + 8(t + 1)b^t_{(2k-1)n+k-1} + (2t + 1)^2}
\]

for \(n \geq 0\),

where \(t_{2i-1}\) and \(t_{2i}\) are positive integers such that \(2t_{2i-1}^2 - t_{2i}^2 = 2t^2 - 1\) for \(1 \leq i \leq k-2\), \(t < t_1 < t_3 < \cdots < t_{2k-5} < h\) and \(1 < t_2 < t_4 < \cdots < t_{2k-4} < h\).
Proof. (1) Let \(\#\text{Rep} = 2k > 4 \), then the set of representatives is

\[
\text{Rep} = \{[\pm t \ 1], [\pm t_{2i-1} \ t_{2i}], [\pm h \ h] \},
\]

where \(t_{2i-1} \) and \(t_{2i} \) are positive integers such that \(2t^2_{2i-1} - t^2_{2i} = 2t^2 - 1 \) for \(1 \leq i \leq k-2, t < t_1 < t_3 < \cdots < t_{2k-5} < h \) and \(1 < t_2 < t_4 < \cdots < t_{2k-4} < h \). In this case

1. \([t \ 1]^M \) generates all integer solutions \((x_{(2k-1)n+1}, y_{(2k-1)n+1}) \) for \(n \geq 0 \),
2. \([t \ -1]^M \) generates all integer solutions \((x_{(2k-1)n}, y_{(2k-1)n}) \) for \(n \geq 1 \),
3. \([h \ h]^M \) generates all integer solutions \((x_{(2k-1)n+k}, y_{(2k-1)n+k}) \) for \(n \geq 0 \),
4. \([t_{2i-1} \ t_{2i}]^M \) generates all integer solutions \((x_{(2k-1)n+i+1}, y_{(2k-1)n+i+1}) \) for \(n \geq 0 \),
5. \([t_{2i-1} - t_{2i}]^M \) generates all integer solutions \((x_{(2k-1)n-i}, y_{(2k-1)n-i}) \) for \(n \geq 1 \).

So the set of all integer solutions is \(\{(2B_n + tC_n, 4tB_n + C_n), (2t_{2i}B_n + t_{2i-1}C_n, 4t_{2i-1}B_n + t_{2i}C_n), (2hB_n + hC_n, 4hB_n + hC_n) : n \geq 0\} \cup \{(-2B_n + tC_n, 4tB_n - C_n), (-2t_{2i}B_n + t_{2i-1}C_n, 4t_{2i-1}B_n - t_{2i}C_n) : n \geq 1\} \).

(2) It can be proved in the same way that Theorem 2.3 was proved. \(\square \)

In Table 1, the set of representatives is given for some values of \(t \). As we can see in Table 1, when \(\#\text{Rep} = 2k > 4 \), it is impossible to determine the set of representatives and \#\text{Rep} in terms of \(t \). That is why we assume that \(\text{Rep} = \{[\pm t \ 1], [\pm t_{2i-1} \ t_{2i}], [\pm h \ h] \} \), where \(t_{2i-1} \) and \(t_{2i} \) are positive integers such that \(2t^2_{2i-1} - t^2_{2i} = 2t^2 - 1 \) for \(1 \leq i \leq k-2, t < t_1 < t_3 < \cdots < t_{2k-5} < h \) and \(1 < t_2 < t_4 < \cdots < t_{2k-4} < h \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>Set of representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>985</td>
<td>{[\pm 985 \ 1], [\pm 995 \ 199], [\pm 1025 \ 401], [\pm 1267 \ 1127], [\pm 1393 \ 1393]}</td>
</tr>
<tr>
<td>5741</td>
<td>{[\pm 5741 \ 1], [\pm 6001 \ 2471], [\pm 6739 \ 4991], [\pm 6805 \ 5167], [\pm 8119 \ 8119]}</td>
</tr>
<tr>
<td>33461</td>
<td>{[\pm 33461 \ 1], [\pm 35155 \ 15247], [\pm 38935 \ 28153], [\pm 40409 \ 32039], [\pm 47321 \ 47321]}</td>
</tr>
<tr>
<td>195025</td>
<td>{[\pm 195025 \ 1], [\pm 195083 \ 6767], [\pm 195257 \ 13457], [\pm 197005 \ 39401], [\pm 197743 \ 46207], [\pm 199547 \ 59737], [\pm 202985 \ 79601], [\pm 205933 \ 93527], [\pm 205973 \ 93703], [\pm 207607 \ 100657], [\pm 209405 \ 107849], [\pm 211327 \ 115103], [\pm 219883 \ 143623], [\pm 222425 \ 151249], [\pm 227837 \ 166583], [\pm 236623 \ 189503], [\pm 243355 \ 205849], [\pm 243443 \ 206057], [\pm 246977 \ 214303], [\pm 250747 \ 222887], [\pm 254665 \ 231601], [\pm 271133 \ 266377], [\pm 275807 \ 275807]}</td>
</tr>
</tbody>
</table>

Table 1. \(2t^2 - 1 \) is a perfect square

54
2.3 Case 3: $2t^2 - 1$ is not a perfect square

When $2t^2 - 1$ is not a perfect square for $t \geq 2$, we have two cases: $\#\text{Rep} = 2$ or $\#\text{Rep} > 2$.

Theorem 2.5. If $\#\text{Rep} = 2$, then

1. The set of all integer solutions of (11) is \(\{(x_{2n+1}, y_{2n+1}) : n \geq 0\} \cup \{(x_{2n}, y_{2n}) : n \geq 1\} \), where
 \[
 (x_{2n+1}, y_{2n+1}) = (2B_n + tC_n, 4tB_n + C_n) \\
 (x_{2n}, y_{2n}) = (-2B_n + tC_n, 4tB_n - C_n).
 \]

2. The general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing numbers are
 \[
 r_{2n}^t = \frac{2B_n + tC_n - t}{2} \\
 r_{2n-1}^t = \frac{-2B_n + tC_n - t}{2} \\
 b_{2n}^t = \frac{2t(B_n + b_{n+1}) + 2B_n + C_n - 1}{2} \\
 b_{2n-1}^t = \frac{2t(B_n + b_{n+1}) - 2B_n - C_n - 1}{2} \\
 c_{2n}^t = \sqrt{8(b_{2n}^t)^2 + 8(t + 1)b_{2n}^t + (2t + 1)^2} \\
 c_{2n-1}^t = \sqrt{8(b_{2n-1}^t)^2 + 8(t + 1)b_{2n-1}^t + (2t + 1)^2}
 \]
 for $n \geq 1$.

Proof. (1) If $\#\text{Rep} = 2$, then the set of representatives is $\text{Rep} = \{[\pm t \ 1]\}$ and in this case, $[t \ 1]M^n$ generates all integer solutions (x_{2n+1}, y_{2n+1}) for $n \geq 0$ and $[t \ -1]M^n$ generates all integer solutions (x_{2n}, y_{2n}) for $n \geq 1$. Thus the set of all integer solutions is \(\{(2B_n + tC_n, 4tB_n + C_n) : n \geq 0\} \cup \{(-2B_n + tC_n, 4tB_n - C_n) : n \geq 1\} \).

(2) From (1), we get
 \[
 r_{2n}^t = \frac{2B_n + tC_n - t}{2}.
 \]
 Hence we get from (9)
 \[
 b_{2n}^t = \frac{2t(B_n + b_{n+1}) + 2B_n + C_n - 1}{2}
 \]
 and from (10)
 \[
 c_{2n}^t = \sqrt{8(b_{2n}^t)^2 + 8(t + 1)b_{2n}^t + (2t + 1)^2}
 \]
 for $n \geq 1$. \hfill \Box

Theorem 2.6. If $\#\text{Rep} = 2k > 2$, then

1. The set of all integer solutions of (11) is
 \[
 \{(x_{2kn+1}, y_{2kn+1}), (x_{2kn+i+1}, y_{2kn+i+1}) : n \geq 0\} \cup \{(x_{2kn}, y_{2kn}), (x_{2kn-i}, y_{2kn-i}) : n \geq 1\},
 \]

55
where
\[
(x_{2kn+1}, y_{2kn+1}) = (2B_n + tC_n, 4tB_n + C_n)
\]
\[
(x_{2kn+i+1}, y_{2kn+i+1}) = (2t_{2i}B_n + t_{2i-1}C_n, 4t_{2i-1}B_n + t_{2i}C_n)
\]
\[
(x_{2kn}, y_{2kn}) = (-2B_n + tC_n, 4tB_n - C_n)
\]
\[
(x_{2kn-i}, y_{2kn-i}) = (-2t_{2i}B_n + t_{2i-1}C_n, 4t_{2i-1}B_n - t_{2i}C_n).
\]

2. The general terms of \(t \)-cobalancers, \(t \)-cobalancing numbers and Lucas \(t \)-cobalancing numbers are
\[
r_{2kn}^t = \frac{2B_n + tC_n - t}{2}
\]
\[
r_{2kn-1}^t = \frac{-2B_n + tC_n - t}{2}
\]
\[
r_{2kn-i-1}^t = \frac{-2t_{2i}B_n + t_{2i-1}C_n - t}{2}
\]
\[
b_{2kn}^t = \frac{2t(B_n + b_{n+1}) + 2B_n + C_n - 1}{2}
\]
\[
b_{2kn-1}^t = \frac{2t(B_n + b_{n+1}) - 2B_n - C_n - 1}{2}
\]
\[
b_{2kn-i-1}^t = \frac{(-2t_{2i} + 4t_{2i-1})B_n + (t_{2i-1} - t_{2i})C_n - t - 1}{2}
\]
\[
c_{2kn}^t = \sqrt{8(b_{2kn}^t)^2 + 8(t + 1)b_{2kn}^t + (2t + 1)^2}
\]
\[
c_{2kn-1}^t = \sqrt{8(b_{2kn-1}^t)^2 + 8(t + 1)b_{2kn-1}^t + (2t + 1)^2}
\]
\[
c_{2kn-i-1}^t = \sqrt{8(b_{2kn-i-1}^t)^2 + 8(t + 1)b_{2kn-i-1}^t + (2t + 1)^2}
\]

for \(n \geq 1 \) and
\[
r_{2kn+i}^t = \frac{2t_{2i}B_n + t_{2i-1}C_n - t}{2}
\]
\[
b_{2kn+i}^t = \frac{(2t_{2i} + 4t_{2i-1})B_n + (t_{2i-1} + t_{2i})C_n - t - 1}{2}
\]
\[
c_{2kn+i}^t = \sqrt{8(b_{2kn+i}^t)^2 + 8(t + 1)b_{2kn+i}^t + (2t + 1)^2}
\]

for \(n \geq 0 \),

where \(t_{2i-1} \) and \(t_{2i} \) are positive integers such that \(2t_{2i-1}^2 - t_{2i}^2 = 2t^2 - 1 \) for \(1 \leq i \leq k-1, t < t_1 < t_3 < \cdots < t_{2k-3} \) and \(1 < t_2 < t_4 < \cdots < t_{2k-2} \).

Proof. (1) If \(\# \text{Rep} = 2k > 2 \), then the set of representatives is \(\text{Rep} = \{[\pm t \ 1], [\pm t_{2i-1} \ t_{2i}]\} \), where \(t_{2i-1} \) and \(t_{2i} \) are positive integers such that \(2t_{2i-1}^2 - t_{2i}^2 = 2t^2 - 1 \) for \(1 \leq i \leq k-1, t < t_1 < t_3 < \cdots < t_{2k-3} \) and \(1 < t_2 < t_4 < \cdots < t_{2k-2} \). Here,

1. \([t \ 1]M^n\) generates all integer solutions \((x_{2kn+1}, y_{2kn+1})\) for \(n \geq 0 \),
2. \([t \ -1]M^n\) generates all integer solutions \((x_{2kn}, y_{2kn})\) for \(n \geq 1 \),
3. \([t_{2i-1} \ t_{2i}]M^n\) generates all integer solutions \((x_{2kn+i+1}, y_{2kn+i+1})\) for \(n \geq 0 \),
4. \([t_{2i-1} \ -t_{2i}]M^n\) generates all integer solutions \((x_{2kn-i}, y_{2kn-i})\) for \(n \geq 1 \).
So the set of all integer solutions is \(\{(2B_n + tC_n, 4tB_n + C_n), (2t_2B_n + t_{2i-1}C_n, At_{2i-1}B_n + t_{2i}C_n) : n \geq 0\} \cup \{(-2B_n + tC_n, 4tB_n - C_n), (-2t_2B_n + t_{2i-1}C_n, At_{2i-1}B_n - t_{2i}C_n) : n \geq 1\} \).

(2) It can be proved in the same way that Theorem 2.5 was proved. □

Again when \#Rep = 2k > 2, it is impossible to determine the set of representatives and \#Rep in terms of \(t \). For example in Table 2, the set of representatives is given for some values of \(t \). That is why we assume that Rep = \{[±1], [±t_{2i-1} t_{2i}]\}, where \(t_{2i-1} \) and \(t_{2i} \) are positive integers such that \(2t_{2i-1}^2 - t_{2i}^2 = 2t^2 - 1 \) for \(1 \leq i \leq k - 1, t < t_1 < t_2 < \cdots < t_{2k-3} \) and \(1 < t_2 < t_4 < \cdots < t_{2k-2} \).

<table>
<thead>
<tr>
<th>(t)</th>
<th>Set of representatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>{[±58 1], [±62 31], [±74 65]}</td>
</tr>
<tr>
<td>142</td>
<td>{[±142 1], [±148 59], [±182 161]}</td>
</tr>
<tr>
<td>54</td>
<td>{[±54 1], [±56 21], [±60 37], [±70 63]}</td>
</tr>
<tr>
<td>135</td>
<td>{[±135 1], [±137 33], [±173 153], [±187 183]}</td>
</tr>
<tr>
<td>152</td>
<td>{[±152 1], [±154 35], [±158 61], [±178 131], [±196 175], [±212 209]}</td>
</tr>
<tr>
<td>299</td>
<td>{[±299 1], [±301 49], [±311 121], [±359 281], [±385 343], [±415 407]}</td>
</tr>
<tr>
<td>275</td>
<td>{[±275 1], [±277 47], [±293 143], [±295 151], [±307 193], [±317 223], [±353 313], [±383 377]}</td>
</tr>
</tbody>
</table>

Table 2. \(2t^2 - 1 \) is not a perfect square

3 Concluding remark

In this paper, we determine the general terms of all \(t \)-cobalancers, \(t \)-cobalancing numbers and Lucas \(t \)-cobalancing numbers by solving the Pell equation \(2x^2 - y^2 = 2t^2 - 1 \) for some fixed integer \(t \geq 1 \) in three cases: \(t = 1, 2t^2 - 1 \) is a perfect square or not a perfect square for \(t \geq 2 \). But in all cases, we are able to determine the general terms of them.

References

