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1 Introduction
A positive integer n is called a balancing number [2] if the Diophantine equation
142+ +(n—-1)=Mn+1)+n+2)+ -+ (n+7) (1)

holds for some positive integer r which is called balancer corresponding to n. If n is a balancing
number with balancer r, then from (1)

s (n+r)(n+r+1)

—2n—14+vV82+1
n® = 5 and r = 5 .

2)

Hence from (2) we get that n is a balancing number if and only if n? is a triangular number

(triangular numbers denoted by 7;, are the numbers of the form 7, = w forn > 1) and
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8n?+1 is a perfect square. Though the definition of balancing numbers suggests that no balancing
number should be less than 2. But from (2), 8(0)2+1 = 1 and 8(1)*+ 1 = 3 are perfect squares.
So we accept 0 and 1 to be balancing numbers. A balancing number is denoted by ,, and hence
By=0,B,=1,By=6and B,,; = 6B, — B,_{ forn > 2.

Later Panda and Ray [16] defined that a positive integer n is called a cobalancing number if
the Diophantine equation

I+24+---+n=n+1)+n+2)+---+(n+7r) 3)

holds for some positive integer » which is called cobalancer corresponding to n. If n is a
cobalancing number with cobalancer r, then from (3)

(n+r)(n+r+1) —2n —14++v8n?2+8n+1
and r = .

1) =
n(n+1) 5 5

“4)

Hence from (4) we get that n is a cobalancing number if and only if n(n + 1) is a triangular
number and 8n? + 8n + 1 is a perfect square. Since 8(0)? + 8(0) + 1 = 1 is a perfect square, we
accept O to be a cobalancing number, just like Behera and Panda accepted 0, 1 balancing numbers.
A cobalancing number is denoted by b,, and by = b; = 0,0, = 2 and b,,,, = 6b,, — b,_1 + 2 for
n > 2.

It is clear from (1) and (3) that every balancing number is a cobalancer and every cobalancing
number is a balancer, that is, B,, = r,,; and R,, = b,, for n > 1, where R, is the n-th balancer
and r,, is the n-th cobalancer. Since R,, = b,,, we get from (1) that

2B, — 1+ \BBIFT . 21+ /B T8, 11
an = .
2 2

®)

n n

Thus from (5), we see that B, is a balancing number if and only if 8 B2 + 1 is a perfect square
and b,, is a cobalancing number if and only if 82 + 8b,, + 1 is a perfect square. Thus

C,=+/8B2+1 and ¢, = \/3b2 + 8b, + 1 (6)

are integers which are called the n-th Lucas-balancing number and n-th Lucas-cobalancing
number, respectively.

N Biiet formulas fg:allfilancing numbers are B, = %, b, = % — %, C, =
% and ¢, = %forn > 1, where @ = 1—|—\/§andﬁ = 1 — +/2 which are the the
roots of the characteristic equation for Pell numbers P, (see also [6-8, 14,15,19,21,24]).

Balancing numbers and their generalizations have been investigated by several authors from
many aspects. In [11], Liptai proved that there is no Fibonacci balancing number except 1 and
in [12], he proved that there is no Lucas balancing number. In [23], Szalay considered the same
problem and obtained some nice results by a different method. In [9], Kovécs, Liptai and Olajos
extended the concept of balancing numbers to the (a, b)-balancing numbers defined as follows:

Let a > 0 and b > 0 be coprime integers. If

(@a+b)+--+(aln—1)+b)=(a(n+1)+b)+ -+ (a(n+7) +b)
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for some positive integers n and 7, then an + b is an (a, b)-balancing number. The sequence of
(a, b)-balancing numbers is denoted by B2 for m > 1. In [10], Liptai, Luca, Pintér and Szalay
generalized the notion of balancing numbers to numbers defined as follows: Let i, k, [ € Z* such
that y > 4. Then a positive integer = with = < y — 2 is called a (k, [)-power numerical center for
y if
Pt @ -Df =@+ 1)+ +(y— 1)

They studied the number of solutions of the equation above and proved several effective and
ineffective finiteness results for (k, [)-power numerical centers. For positive integers &, z, let

Hp(z) =2(z+1)...(x +k—1).

Then it was proved in [9] that the equation B,, = IIx(z) for a fixed integer k& > 2 has only
infinitely many solutions and for k& € {2, 3,4} all solutions were determined. In [26], Tengely
considered the case k = 5, that is, B,, = z(xz + 1)(z + 2)(z + 3)(z + 4) and proved that this
Diophantine equation has no solution for m > 0 and x € Z. In [4], Frontczak considered the sums
of balancing and Lucas-balancing numbers with binomial coefficients and in [S] he considered
balancing polynomials. In [18], Panda, Komatsu and Davala considered the reciprocal sums
of sequences involving balancing and Lucas-balancing numbers. In [20], Patel, Irmak and Ray
considered incomplete balancing and Lucas-balancing numbers and in [22], Ray considered the
sums of balancing and Lucas-balancing numbers by matrix methods. In [17], Panda and Panda
defined almost balancing numbers. A natural number n is called an almost balancing number if
the Diophantine equation

(n+D)+n+2)+-+m+r)]-[1+2+-+(n-1)]=1

holds for some positive integer  which is called the almost balancer. In [25], the first author
derived some new results on almost balancing numbers, triangular numbers and square triangular
numbers.

Now let £ > 1 be an integer. By considering (3), a positive integer n is called a ¢-cobalancing
number if the Diophantine equation

1+2+--+n=Mn+1+)+n+24+)+ -+ (n+r+1) (7)

holds for some positive integer » which is called ¢-cobalancer corresponding to 7.
Let b!, denote the n-th ¢-cobalancing number and let !, denote the n-th ¢-cobalancer. Then
from (7), we get

i —2b%, — 2t — 1+ /8(b,)2 + 8(t + 1)V, + (2t + 1)2
" 2

®)

and

2rt — 1+ /8(rh)2 + 8trt, + 1
5 :

b, = ©)

Thus from (8), we notice that !, is the n-th ¢-cobalancing number if and only if
8(bL)? + 8(t + 1) + (2t + 1)?
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is a perfect square. So

ch = \/8(bL)2 4 8(t + 1)bt, + (2t 4 1)2 (10)

is an integer which is called the n-th Lucas ¢-cobalancing number.

In order to determine the general terms of ¢-cobalancers, t-cobalancing numbers and Lucas
t-cobalancing numbers, we have to determine the set of all (positive) integer solutions of the Pell
equation ([1,3,13])

2% — % =22 — 1. (11)
From (9), we see that r! is a t-cobalancer if and only if 8(r%)? + 8tr! + 1 is a perfect square. So

we set
8(rt)? +8trl, +1=y° (12)

for some integer y > 1. Then 2(2r! + t)? — y* = 2t*> — 1 and putting
x=2rf +1, (13)

we get the Pell equation in (11). To get the set of all integer solutions of (11), we need some
notations.

Let F(z,y) = ax® + bxy + cy? be an indefinite integral quadratic form [3] of discriminant
A = b?—4ac and let m be any integer. Then the A-order O, is defined for nonsquare discriminant
A to be the ring Op = {z + ypa : x,y € Z}, where pp = \/éifA = 0 (mod 4) or %Z if

A = 1(mod 4). So Oy is a subring of Q(v/A) ={z + yv/A : x,y € Q}. The unit group OY is
defined to be the group of units of the ring O . We can rewrite F' to be

(xa + be”F)(:va +y=va ‘F)
F(z,y) =
a
So the module My of F'is
b+ vA
Mp ={za+y 2\/_::r,y€Z}CQ(\/Z).
Therefore, we get
b+ VA b+ VA
(u+wvpa)(za+y \/_) =7'a+y \/_,

2 2

where

( b
[z ] [ vl avb if A=0 (mod 4),

—cv u+ v

[z ] = (14)

U ~+ lebv av
—cv u —+ %’v

[z y] if A=1 (mod 4).

\
So there is a bijection ¥ : {(x,y) : F(x,y) = m} — {y € Mp : N(v) = am} for solving
F(x,y) = m. The action of OX ; = {a € OX : N(a) = 1} on {(z,y) : F(x,y) = m} of
integral solutions of the equation F'(x,y) = m is most interesting when A is a positive nonsquare
since O , is infinite. Therefore, the orbit of each solution will be infinite and so the set {(z,y) :
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F(x,y) = m} is either empty or infinite. Since O} , can be explicitly determined, the set {(z,y) :
F(z,y) = m} is satisfactorily described by the representation of such a list, called a set of
representatives of the orbits. Let o > 1 be the smallest unit of O, andlet 7o = ea if N(ea) =1
or e} if N(ea) = —1. Then every O} , orbit of integral solutions of F'(x,y) = m contains a
solution (x,y) € Z x Z such that 0 < y < U, where

oo a- L) fam >0
|@mma |2 (14 1) ifam < 0,

So for finding the a set of representatives of the O} ; orbits of integral solutions of F'(z,y) = m,
we must find for each integer y, such that 0 < y, < U, all integers z, that satisfy F'(xo, yo) = m.
If F(Io, yo) =m, then

azy 4+ broyo + cys = m < Ayd + 4am = (2axg + byo)?

and hence
_ —byo £ /Ayt + dam

2a
Consequently, we get the set of representatives Rep = {[x¢ yo]}. Thus for the matrix M defined

Zo

in (14), the set of all integer solutions of F'(x,y) = m is

{£(@,y) : [x y] = [z yo]M",n € Z}.

2 Main results

For the set of all integer solutions of (11), the indefinite form F(x,y) = 2z* — y? of discriminant
A=8.S075=3+2v2and
3 4
M= [ ] (15)

2 3

by (14). In order to determine the set of all integer solutions of (11), we have to consider our
problem in three cases: ¢ = 1, 2t — 1 is a perfect square or not a perfect square for t > 2.

21 Casel:t=1
Theorem 2.1. Ift = 1, then
1. The set of all integer solutions of 2x* — y? = 1is {(—2B, + C,,,4B,, — C,,) : n > 1}.

2. The general terms of 1-cobalancers, 1-cobalancing numbers and Lucas 1-cobalancing
numbers are
7t =bpi1, b= Bpy — 1 and ¢, = Cpiy

forn > 1.
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Proof. (1) Let t = 1. Then for the Pell equation 222 — 3? = 1, in the range

Tl2r2v2)
3+2v2)

Ay + 4am = 8y2 + 8 is a perfect square only for yo = 1 and hence
by £ Ay§+4am_:|:\/8(l)2+8_i1
B 2a B 4 S

So the set of representatives is Rep = {[+1 1|} and in this case [I — 1]M™ (where M is defined
in (15)) generates all integer solutions (z,, y,) for n > 1. Since the n-th power of M is

%(1_i):

TA

2(1)(3 + 2v/2)
8

amTa

A

0<y<U~—

Zo

C, 4B,
2B, C,

M =

for n > 1, we conclude that the set of all integer solutions is {(—2B,, + C,,, 4B, — C},) : n > 1}.
(2) Recall that x = 2r% + ¢ by (13). So from (1), we easily deduce that

1 _QBn-i—l + Cn—l—l —1
r, = 2
_2(a2n+2_62n+2) a2n+2+/82n+2 _ 1

4v2 2

2
BRI o LR
W TP R Ty
Q2n+2(\/§ _ 1) 4 /62n+2(\/§_|_ 1) 1

42 2

a?n-‘rl _ ﬁ2n+1 1

— o2 t2 (—

4/2 2

- bn+1-

Note that 1/8(r%)2 + 8trt, + 1 = y,, by (12). So from (9), we get
L 2rr =1+ /8(rl)2+ 8L+ 1

bl
n 2
_ 20p41 — 1448511 — Cha
2
a2n+1752n+1 1 a2n+27ﬁ2n+2 a2n+2+52n+2
_ (_ 2 _5)_1+4( 2 )_ 2
2
2n+1/ 1 a a 2n+1/ —1 B 8
M Ga T B GE BT
2
2n+2 _ 2Q2n+2
_ ¢ B -1
42
= Bn+1 -1

and from (10), we conclude that

ch = /8(Bus1 — 1)2+16(Byy1 — 1) +9=1/8B2, + 1= Cpsy

as we wanted. O
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2.2 Case 2: 2t> — 1 is a perfect square

In this section, we assume that 2t — 1 is a perfect square for t+ > 2. Before considering our
problem, we can give the following theorem.

Theorem 2.2. The quadratic equation 2t* — 1 = h? is satisfied for (t,, h,) = (Pan_1,¢y) for
n > 1.

Proof. Let 2t> — 1 = h? for some positive integer h. Then we get the Pell equation 2t — h? = 1.
In this case the set of representatives is Rep = {[+1 1]} and [l — 1]M™ generates all integer
solutions (t,,, h,,) forn. > 1. Thus 2t> — 1 = h? is satisfied for (¢, h,) = (=2B,,+C,,, 4B, —C,,)
for n > 1. On the other hand it can be easily seen that

—2B, +C,, = P5,_1 and 4B, — C,, = ¢,.

So the quadratic equation 2t> — 1 = h? is satisfied for (t,, h,) = (Pa,_1, ¢,) for n > 1. Indeed,

since P, = O‘;:/gn and ¢, = w we easily get
n— n— 2n—1 n— n—
2t2_1:Oé4 2+54 2+2(046) :(052 1+B2 1)2202:h2
as we claimed. O

From Theorem 2.2, we see that 2t — 1 is a perfect square for ¢t = P,,_;. Consequently, we
determine the general terms of all P, _;—cobalancers, P»,_;—cobalancing numbers and Lucas
P,,,_1—cobalancing numbers for n > 2 (For n = 1, we have t = P; = 1 and clearly we have
already considered it in the previous section). In order to determine the set of all integer solutions
of (11), we have two cases: #Rep = 4 or #Rep > 4.

Theorem 2.3. If #Rep = 4, then

1. The set of all integer solutions of (11) is

{($3n+17 y3n+1)7 (x3n+27y3n+2) n Z 0} U {(x3n>y3n) n 2 1}7

where

<x3n+1; y3n+1) = (2Bn + tCn7 4tBn + Cn)
(x3n+27 y3n+2) = (2h'Bn + hcna 4th + hCn)
(xSnu y3n) - (_2Bn + tOna 4tBn - Cn)

2. The general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing

numbers are
. 2B, +1C, —t

. —2B,, +tC, — t
r3n—1 = 2
: 2t(By, + bpy1) + 2B, +C, — 1
b3n - 2
y 2Byt bu) = 2B, — Cp— 1
3n—1 2
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b= \/8(b,)2 + 8(t + )bl + (2t +1)2
oy = /()2 + 8(E+ Db,y + (2t +1)?

forn > 1 and
. 2hB,, + hC,, —t
T3pt1 = 5
bt _ 2hBpi1 —t—1
3n+1 2
Coni1 = \/8(b§n+1)2 + 8(t + 1)bh,, .y + (2t + 1)
forn > 0.

Proof. (1) If #Rep = 4, then the set of representatives is Rep = {[+t 1],[£h 5|} and in this
case

1. [t 1]M™ generates all integer solutions (Z3,1, Y3ns1) for n > 0,
2. [t — 1]M™ generates all integer solutions (&3, ¥3,) forn > 1,
3. [h h]M™ generates all integer solutions (3,12, Y3n12) for n. > 0.

Thus the the set of all integer solutions is {(2B,, +tC,,, 4t B, + C,,), (2hB,, + hC,,, 4hB,, + hC,,) :
n >0} U{(-2B, +tC,,4tB, — C,) :n > 1}.

(2) From (1), we easily get
. 2B, +tC, —t

for n > 1. Thus from (9), we get
2B, +tC, -t -1+ 4B, +C,

bt

3n — 2
_t4B,+C,—1)+2B,+C, — 1
N 2
_ 28(By 4 bpy1) +2B, +C, — 1
- 2

forn > 1since 4B, + C,, — 1 = 2(B,, + b, 41). From (10), we observe that

b = /8(b,,)2 + 8(t + 1), + (2t + 1)2

for n > 1. The other cases can be proved similarly. U

Theorem 2.4. If #Rep = 2k > 4, then
1. The set of all integer solutions of (11) is

{(17(2k;—1)n+1, y(2k—1)n+1); ($(2k—1)n+i+1, y(Qk—l)n+i+1)a (17(2k—1)n+k:7 y(2k—1)n+k) :

n > 0} U {(13(21c—1)n7 y(2k—1)n>> (13(2k—1)n—z'; y(2k—1)n—z’) in > 1}7
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where

9B, +tCy, 4t By, + C)
2t By + toi_1Cn, Atgi 1By, + t2,Cy)

($(2k—1)n+1, Y(2k—1)n+1 (
(
(2hB,, + hC,,,4hB,, + hC,,)
(=
(=

(x(zk Dn+i+1s Y(2k—1)n+it+1

2B, + tCy, 4B, — C,)
2t9i By, + toi1Cy, Atei_1 B, — t2,Cy).

)

) =

($(2k71)n+k> Y2k— 1)n+k)
(T(2k—1)n, Y2b—1)n)

) =

(x(Qk )n—i» Y(2k—1)n—i

2. The general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing

numbers are

T2k—1)n = 5
‘ —2B, +tC, —1
T2k—1)n—1 = 5
¢ —2t9; By, + i 1Cy — 1
Tk—1)n—i—1 = 5
” 2t(Bn +bpi1) + 2B, +C, — 1
(2k—1)n 9
b _ 26(By 4 bpy1) — 2B, —Cp, — 1
(2k—1)n—1 = 2

(—2t9; + 4toi—1) By + (toi1 — t2;)Cpy —t — 1

b€2k—1)n—i—1 =
Clonyn = /8(bl_1))? +8(t + by _y, + (28 + 1)?
CEQkfl)nfl = \/8 (2k—1)n_1> + 8(t + 1)b€%_1)n_1 + (2t 4+ 1)2

C€2k—1)n—i—1 = \/S(bfgk_l)n_l_f +8(t + 1)b'52k, Dao1-i + (2t +1)2

forn > 1and
¢ 2ty By + 12;1Cp — t
T(2k—1)n+i — 9
: 2hB, + hC, — 1
Tok—1)n+k—1 = 9
b _ (2t9; + 4tgi—1) By + (tai1 +t2;)Cpy —t — 1
(2k—1)n+1 9

6h B, —I—2hC’ —t—1

b(2k Dn+k—1 —
oty = /3 logysa)? + 8+ Dblyy_yyy + (26 +1)2

c(?k Dn+k—1 — \/8 (2k—1 n+k71)2 + 8(t + ]')bl(tZkfl)nJrkfl + (Qt + 1)2

forn >0,

where ty; 1 and ty; are positive integers such that 2t3, | —t3, = 2t>—1for1 <i < k-2t <t; <
t3 < <togps<handl <ty <ty <--+ <to_g <h.

53



Proof. (1) Let #Rep = 2k > 4, then the set of representatives is

where to; ;| and t; are positive integers such that 2¢3, | —t2, = 2> —1for1 <i < k-2t <t; <

Rep = {[£t 1], [£toi1 ta], [£h h]},

t3 < <tgps < hand 1l <ty <ty <--- <to_yg < h.Inthis case

1. [t 1]M™ generates all integer solutions (& (2x—1)n+1, Y(2k—1)nt1) for n > 0,

2. [t — 1]M™ generates all integer solutions (2 (2x—1yn, Y(2k—1)n) forn > 1,

3. [h h]M™ generates all integer solutions (& (2k—1)n+k, Y(2k—1)n+k) forn >0,

4. [tai—1 to)M™ generates all integer solutions ((2k—1)n+i+1, Y(2k—1)n+it1) forn >0,
5. [tai—1 — to;)M™ generates all integer solutions ((ag—1yn—i, Y(2k—1)n—i) for n > 1.

So the set of all integer solutions is {(2B,, + tC,,, 4t B, + C,,), (2te; By, + to;_1Cp, 4to;_1 By + to;

(2) It can be proved in the same way that Theorem 2.3 was proved.

In Table 1, the set of representatives is given for some values of ¢. As we can see in Table 1,
when #Rep = 2k > 4, it is impossible to determine the set of representatives and #Rep in terms
of t. That is why we assume that Rep = {[t 1], [£t2;1 to], [2h h]}, where to;_; and to; are
positive integers such that 2¢3, | —12, =2t —1for1 <i < k-2t <t; <t3< -+  <tlop5<h

and 1 <ty <ty < -+ <top_g <h.

Set of representatives

985

{[£985 1],[+995 199],[+£1025 401],
[£1267 1127],[+1393 1393]}

o741

{[£5741 1],[£6001 2471],[£6739 4991],

[£6805 5167],[+8119 8119]}

33461

{[£33461 1], [£35155 15247],[£38935 28153,

[£40409 32039], [+47321 47321]}

195025

+197005 39401], [£197743 46207], [£199547

{[£195025 1], [£195083 6767], [£195257 13457],
[
[

59737],

+£202985 79601], [+205933 93527], [+205973 93703,

[£207607 100657, [+:209405 107849], [£211327
[£219883 143623, [£222425 151249], [£227837
[£236623 189503], [+:243355 205849)], [£243443
[£246977 214303], [£250747 222887], [£254665

[£271133 266377, [+275807 275807]}

115103],
166583],
206057],
231601],

Table 1. 2t> — 1 is a perfect square
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2.3 Case 3: 2t> — 1 is not a perfect square
When 2t? — 1 is not a perfect square for t > 2, we have two cases: #Rep = 2 or #Rep > 2.
Theorem 2.5. If #Rep = 2, then

1. The set of all integer solutions of (11) is {(Toni1,Yons1) : 1 > 0} U {(z2n, y2n) : n > 1},
where

(I2n+la y2n+1) - (2Bn + tCna 4tBn + On)

2. The general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing

numbers are

. 2B, +1C, —t

TQ?’L - 2
¢ —2B, +tC, —t
Top—1 = 9
o 2t(By, + bpy1) + 2B, +C, — 1
2n —
2
Bt _ 2t(Bn + bn+1) -2B,—-C, —1
2n—1 2

b= \/S(0h )2+ 8(t + )by, + (2t + 1)
Con1 = \/ 8(bh,_1)% + 8(t + 1), + (2t + 1)2

forn > 1.

Proof. (1) If #Rep = 2, then the set of representatives is Rep = {[£t 1]} and in this case,
[t 1]M™ generates all integer solutions (%9, 41, Y2n+1) forn > 0 and [t — 1] M™ generates all
integer solutions (s, Y2, ) for n > 1. Thus the set of all integer solutions is {(2B,, +tC,,, 4t B,, +
Cn):n>0}U{(-2B, +tC,,4tB, — C,) : n > 1}.

(2) From (1), we get
¢ 2B, +1tC, —1

TQTL - 2

Hence we get from (9)
2t(By + bpt1) + 2B, + C, — 1

b, =
2n 2

and from (10)

= /8(b,,)2 + 8(t + 1)b, + (2t + 1)2
forn > 1. O

Theorem 2.6. If #Rep = 2k > 2, then

1. The set of all integer solutions of (11) is

{(lﬁzan’ y2kn+l)7 (l’2kn+i+1, y2kn+i+1) in > 0} U {($C2kn, y2kn), ($2knﬂ', kanfi) in > 1}7
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where

2B, +tC,,4tB,, + C,,)

2t9; By, + to;i_1Cy, 4t 1 By + t9,Cy)
—2B, +tC,,4tB,, — C},)

—2t9; By, + to;1Cp, Atoi 1 By, — t2;C).

(x2kn+1 y Y2kn+1

($2kn+i+17 Yo2kn+i+1

)
)
(Tokn, Y2kn)
)

(
(
(
(9321m—i, Yokn—i) = (

2. The general terms of t-cobalancers, t-cobalancing numbers and Lucas t-cobalancing

numbers are
_ 2B, +tC,, —t

Tan - 2
. —2B, +tC,, —t
Tokn—1 = 9
¢ B _QtQiBn + tgl;lc(n —1
Tokn—i—1 = B
B 2t(Bp, + bpi1) + 2B, + C, — 1
2kn — 2
' 2t(Bp + bpy1) — 2B, — C, — 1
kanfl = 9
¢ (—2ty; + 4toi1) By + (toim1 — t2)Cy —t — 1
bzlmﬂel = 9

Chon = /8By )2 + 8(t + Dby, + (28 +1)2

iy = /801 + 8(E+ Dy, + (26 +1)2

Corn—io1 = \/8<bt2kn—z'—1)2 +8(t + )by, + (2t +1)2

forn > 1 and
t 2t0; By, +19;1Cy, —
Tokn+i = 5
bt — (2t9; + 4o 1) By + (taio1 +t2:)Cry —t — 1
2kn+i — 5
e+ = \/S(béan)Q + 8(t + 1)bhy, s + (2t + 1)2
forn >0,

where ty;_1 and ty; are positive integers such that 2t3, | —t3, = 2t>~1for1 <i <k—1,t <t; <
tg3 <o <togpzandl <ty <ty <--+ <tgp_a.

Proof. (1) If #Rep = 2k > 2, then the set of representatives is Rep = {[£t 1], [tt2i—1 o]},
where t5;_; and ty; are positive integers such that 2¢3, | — 13, =2t> —1for1 <: < k—1,t <t
<ty < - <tgpszand 1l < tg <ty < --- < tor_o. Here,

1. [t 1]M™ generates all integer solutions (Zogp 11, Yarnr1) for n > 0,

2. [t — 1] M™ generates all integer solutions (Zog,, Yorn ) forn > 1,

W

. [tai—1 to;] M™ generates all integer solutions (Zogpit1, Y2knrit1) forn >0,

>

[tai—1 — to;] M™ generates all integer solutions (Zagn—i, Yokn—s) forn > 1.
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So the set of all integer solutions is {(2B,,+tC,,, 4t B, +C,,), (2t2; By, +t2;1Cy, 4to; 1 B+t
On) n Z O} U {(—2Bn + tCn, 4tBn - Cn), (_2t2iBn + tzi_lcn, 4t2i_1Bn — tgzon) n Z 1}
(2) It can be proved in the same way that Theorem 2.5 was proved. U

Again when #Rep = 2k > 2, it is impossible to determine the set of representatives and
#Rep in terms of ¢. For example in Table 2, the set of representatives is given for some values
of t. That is why we assume that Rep = {[t 1], [£te;—1 t2]}, where t9; 1 and t5; are positive
integers such that 2¢3, | — 3, = 2t> —1for1 < i < k—1,t < t; < t3 < -+ < to,_3 and
1<ty <ty<-- <topo.

’ t ‘ Set of representatives

58 {[£58 1],[+62 31],[+74 65|}

142 {[£142 1],[+148 59|, [+182 161}

54 {[£54 1],[£56 21],[£60 37],[£70 63]}
135 {[£135 1],[£137 33],[£173 153],[£187 183]}

152 | {[£152 1],[+154 35],[£158 61],[+£178 131],[+196 175],[+212 209]}

299 | {[£299 1],[+301 49],[+311 121],[£359 281],[£385 343],[+415 407]}

{[£275 1],[£277 47],[£293 143],[+£295 151],[+307 193],
[+£317 223],[+353 313],[+383 377]}

275

Table 2. 2t? — 1 is not a perfect square

3 Concluding remark

In this paper, we determine the general terms of all ¢-cobalancers, ¢-cobalancing numbers and
Lucas t-cobalancing numbers by solving the Pell equation 22? — y? = 2t* — 1 for some fixed
integer ¢ > 1 in three cases: ¢t = 1, 2t> — 1 is a perfect square or not a perfect square for t > 2.
But in all cases, we are able to determine the general terms of them.
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