Passawan Noppakeaw, Niphawan Phoopha and Prapanpong Pongsriiam
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 3, Pages 13-20
DOI: 10.7546/nntdm.2019.25.3.13-20
Full paper (PDF, 193 Kb)
Details
Authors and affiliations
Passawan Noppakeaw
Department of Mathematics, Faculty of Science
Silpakorn University, Nakhon Pathom, 73000, Thailand
Niphawan Phoopha
Department of Mathematics, Faculty of Science
Silpakorn University, Nakhon Pathom, 73000, Thailand
Prapanpong Pongsriiam
Department of Mathematics, Faculty of Science
Silpakorn University, Nakhon Pathom, 73000, Thailand
Abstract
For positive integers and , let be defined by
if is the expansion of in base . We call an -happy function. Let be a composition of various -happy functions. We show that, for any given , the iteration sequence either converges to a fixed point or eventually becomes a cycle. Here is the identity function mapping to for all and is the -fold composition of . In addition, we prove that the number of all possible fixed points and cycles is finite. Examples are also given.
Keywords
- Happy number
- Happy function
- Digit
- Dynamic
- Iteration
2010 Mathematics Subject Classification
- 11A63
- 26A18
References
- El-Sedy, E. & Siksek, S. (2000). On happy numbers, The Rocky Mountain Journal of Mathematics, 30, 565–570.
- Gilmer, J. (2011). On the density of happy numbers, posted at: http://arxiv.org/pdf/1110.3836v3.pdf
- Grundman, H. G. & Teeple, E. A. (2001). Generalized happy numbers, The Fibonacci Quarterly, 39, 462–466.
- Grundman, H. G. & Teeple, E. A. (2008). Iterated sums of fifth powers of digits, The Rocky Mountain Journal of Mathematics, 38, 1139–1146.
- Guy, R. K. (2004). Unsolved Problems in Number Theory, Springer-Verlag, Third Edition.
- Hargreaves, K. & Siksek, S. (2010). Cycles and fixed points of happy functions, Journal of Combinatorics and Number Theory, 3, 217–229.
- Pan, H. (2008). On consecutive happy numbers, Journal of Number Theory, 128, 1646–1654.
- Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, https://oeis.org
- Styer, R. (2010). Smallest examples of strings of consecutive happy numbers, Journal of Integer Sequences, 13, Article 10.6.3.
- Swart, B. B., Beck, K. A., Crook, S., Turner, C. E., Grundman, H. G., Mei, M. & Zack, L. (2017). Augmented generalized happy functions, The Rocky Mountain Journal of Mathematics, 47, 403–417.
- Zhou, X. & Cai, T. (2009). On e-power b-happy numbers, The Rocky Mountain Journal of Mathematics, 39, 2073–2081.
Related papers
Cite this paper
Noppakeaw, Passawan, Phoopha, Niphawan, & Pongsriiam, Prapanpong (2019). Composition of happy functions. Notes on Number Theory and Discrete Mathematics, 25(3), 13-20, DOI: 10.7546/nntdm.2019.25.3.13-20.