Representation of higher even-dimensional rhotrix

A. O. Isere
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 206–219
DOI: 10.7546/nntdm.2019.25.1.206-219
Full paper (PDF, 187 Kb)

Details

Authors and affiliations

A. O. Isere
Department of Mathematics, Ambrose Alli University
Ekpoma, 310001, Nigeria

Abstract

The multiplication of higher even-dimensional rhotrices is presented and generalized. The concept of empty rhotrix, and the necessary and sufficient conditions for an even-dimensional rhotrix to be represented over a linear map, are investigated and presented.

Keywords

  • Even-dimensional rhotrix
  • Representation
  • Empty rhotrix
  • Multiplication
  • Linear map

2010 Mathematics Subject Classification

  • 15B99

References

  1. Ajibade, A. O. (2003). The concept of Rhotrix in Mathematical Enrichment, International Journal of Mathematical Education in Science and Technology, 34 (2), 175–177.
  2. Aminu, A. (2009). On the Linear System over Rhotrices. Notes on Number Theory and Discrete Mathematics, 15 (4), 7–12.
  3. Aminu, A. & Michael, O. (2015). An introduction to the concept of paraletrix, a generalization of rhotrix, Journal of the African Mathematical Union & Springer-Verlag, 26 (5–6), 871–885.
  4. Atanassov, K. T. & Shannon, A. G. (1998). Matrix-Tertions and Matrix-Noitrets: Exercise for Mathematical Enrichment, International Journal Mathematical Education in Science and Technology, 29 (6), 898–903.
  5. Chinedu, M. P. (2012). Row-Wise Representation of Arbitrary Rhotrix. Notes on Number Theory and Discrete Mathematics, 18 (2), 1–27.
  6. Ezugwu, E. A., Ajibade, A. O. & Mohammed, A. (2011). Generalization of Heart-Oriented rhotrix Multiplication and its Algorithm Implementation, International Journal of Computer Applications, 13 (3), 5–11.
  7. Isere, A. O. (2016). Natural Rhotrix. Cogent Mathematics, 3 (1) , 1–10 (article 1246074).
  8. Isere, A. O. (2017). A note on the Classical and Non-Classical rhotrices, The Journal of Mathematical Association of Nigeria (Abacus), 44(2), 119–124.
  9. Isere, A. O. (2018). Even-dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 24 (2), 125–133.
  10. Isere, A. O. & Adeniran, J. O. (2018). The Concept of Rhotrix Quasigroups and Rhotrix Loops, The Journal of Nigerian Mathematical Society, 37(3), 139–153.
  11. Mohammed, A. (2009). A remark on the classifications of rhotrices as abstract strutures, International Journal of Physical Sciences, 4 (9), 496–499.
  12. Mohammed, A. & Tella, Y. (2012). Rhotrix Sets and Rhotrix Spaces Category, International Journal of Mathematics and computational methods in Science and Technology, 2 (5), 2012.
  13. Mohammed, A., Balarabe, M. & Imam, A. T. (2012). Rhotrix Linear Transformation, Advances in Linear Algebra & Matrix Theory, 2, 43–47.
  14. Mohammed, A. (2014) A new expression for rhotrix, Advances in Linear Algebra & Matrix Theory, 4, 128–133.
  15. Sani, B. (2004). An alternative method for multiplication of rhotrices, International Journal of Mathematical Education in Science and Technology, 35, 777–781.
  16. Sani, B. (2007). The row-column multiplication for higher dimensional rhotrices, International Journal of Mathematical Education in Science and Technology, 38, 657–662.
  17. Sani, B. (2008). Conversion of a rhotrix to a coupled matrix, International Journal of Mathematical Education in Science and Technology, 39, 244–249.
  18. Tudunkaya, S. M. & Manjuola, S. O. (2010). Rhotrices and the Construction of Finite Fields, Bull. Pure Appl Sci. Sect, E. Math. Stat., 29 (2), 225–229.
  19. Usaini, S. & Mohammed, L. (2012). On the rhotrix eigenvalues and eigenvectors, Journal of the African Mathematical Union & Springer-Verlag, 25, 223–235.

Related papers

Cite this paper

Isere, A. O. (2019). Representation of higher even-dimensional rhotrix. Notes on Number Theory and Discrete Mathematics, 25(1), 206-219, DOI: 10.7546/nntdm.2019.25.1.206-219.

Comments are closed.