Y. A. Awad, T. Kadri and R. H. Mghames
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 150–166
DOI: 10.7546/nntdm.2019.25.1.150-166
Full paper (PDF, 225 Kb)
Details
Authors and affiliations
Y. A. Awad ![]()
School of Arts and Sciences, Department of Mathematics and Physics
Lebanese International University, Bekaa, Lebanon
T. Kadri ![]()
School of Arts and Sciences, Department of Mathematics and Physics
Lebanese International University, Bekaa, Lebanon
R. H. Mghames ![]()
School of Arts and Sciences, Department of Mathematics and Physics
Lebanese International University, Bekaa, Lebanon
Abstract
Let T = {t1, t2, …, tm} be a well ordered set of m distinct positive integers with t1 < t2 < … < tm. The GCD matrix on T is defined as (T)m×m = (ti, tj), where (ti, tj) is the greatest common divisor of ti and tj , and the power GCD matrix on T is (Tr)m×m = (ti, tj)r, where r is any real number. The LCM matrix on T is defined as [T]m×m = [ti, tj], where [ti, tj] is the least common multiple of ti and tj, and the power LCM matrix on T is [Tr]m×m = [ti, tj]r. Set T = {t1, t2, …, tm} is said to be gcd-closed if (ti, tj) ∈ T for every ti and tj in T. In this paper, we give a generalization for the power GCD and LCM matrices defined on gcd-closed sets over unique factorization domains (UFDs). Moreover, we present a speculation for a generalization of Bourque–Ligh conjecture to UFDs which states that the least common multiple matrix defined on a gcd-closed P-ordered set in any UFD is nonsingular. Some examples that show what is done are additionally given in ℤ[i] and ℤp[x].
Keywords
- Power GCD P-matrix
- Power LCM P-Matrix
- P-ordering
- gcd-closed sets
- Prime residue system
- Unique factorization domains
2010 Mathematics Subject Classification
- Primary
- 11C20
- 11A25
- Secondary
- 13F15
- 15A36
- 16U30
References
- Beslin, S., & El-Kassar, A. N. (1989). GCD matrices and Smith’s determinant over U.F.D., Bull. Number Theory Related Topics, 13, 17–22.
- Beslin, S., & Ligh, S. (1989). Greatest common divisor matrices, Linear Algebra and Its Applications, 118, 69–76.
- Beslin, S. (1991). Reciprocal GCD matrices and LCM matrices, Fibonacci Quart., 20, 71–274.
- Beslin, S., & Ligh, S. (1989). Another generalization of Smith’s determinant, Bull Australian Math. Soc., 40, 413–415.
- Beslin, S., & Ligh, S. (1992). GCD-closed sets and the determinants of GCD matrices, Fibonacci Quart., 30, 157–160.
- Borque, K., & Ligh, S. (1992). On GCD and LCM matrices, Linear Algebra and Its Applications, 174, 65–74.
- Chun, S. Z. (1996). GCD and LCM Power Matrices, Fibonacci Quart., 43, 290–297.
- El-Kassar, A. N., Awad, Y. A., & Habre, S. S. (2009). GCD and LCM matrices on factor closed sets defined in principle ideal domains, Journ. Math. and Stat., 5, 342–347.
- El-Kassar, A. N., Habre, S. S., & Awad, Y. A. (2010). GCD Matrices Defined on gcd-closed Sets in a PID, International Journal of Applied Mathematics, 23, 571–581.
- Haukkanen, P. (1997). On Smith’s determinant, Linear Algebra and Its Applications, 258, 251–269.
- Haukkanen, P., & Sillanpää, J. (1997). On some analogues of the Bourque–Ligh conjecture on LCM matrices. Notes on Number Theory and Discrete Mathematics, 3 (1), 52–57.
- Hong, S. (1998). On LCM matrices on GCD-closed sets (English summary), Southeast Asian Bull. Math., 22, 381–384.
- Hong, S. (1998). Bounds for determinant of matrices associated with classes of arithmetical functions, Linear Algebra and Its Applications, 281, 311–322.
- Hong, S. (2004). Asymptotic behavior of eigen values of GCD power matrices, Glasgow Math. J., 46, 551–569.
- Hong, S., Zhou, X., & Zhao, J. (2009). Power GCD Matrices for a UFD, Algebra Colloquium, 16, 71–78.
- Li, Z. (1990). The determinant of a GCD matrices. Lin. and Multilin. Alg., 134, 137–143.
- Ligh, S. (1988). Generalized Smith’s determinant, Lin. and Multilin. Alg., 22, 305–306.
- Smith, H. J. S. (1875/76). On the value of a certain arithmetical determinant, Proc. London Math. Soc., 7, 208–212.
Related papers
Cite this paper
Awad, Y. A., Kadri, T., & Mghames, R. H. (2019). Power GCD and power LCM matrices defined on GCD-closed sets over unique factorization domains. Notes on Number Theory and Discrete Mathematics, 25(1), 150-166, DOI: 10.7546/nntdm.2019.25.1.150-166.
