Almost balancing, triangular and square triangular numbers

Ahmet Tekcan
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 108–121
DOI: 10.7546/nntdm.2019.25.1.108-121
Full paper (PDF, 247 Kb)

Details

Authors and affiliations

Ahmet Tekcan
Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey

Abstract

In this work, we derive some new algebraic relations on all almost balancing numbers (of first and second type) and triangular (and also square triangular) numbers.

Keywords

  • Balancing numbers
  • Almost balancing numbers
  • Triangular numbers
  • Square triangular numbers

2010 Mathematics Subject Classification

  • 11B37
  • 11B39

References

  1. Bugeaud, Y. (1999). Linear forms in p-adic logarithms and the Diophantine equation (xn – 1)/(x – 1) = yq. Math. Proc. Cambridge Phil. Soc., 127 (3), 373–381.
  2. Cao, Z. & Dong, X. (2002). On the Terai-Jeśmanowicz conjecture. Publ. Math. Debrecen, 61 (3–4), 253–265.
  3. Cao, Z. & Dong, X. (2003). An application of a lower bound for linear forms in two logarithms to the Terai-Jeśmanowicz conjecture. Acta Arith., 110 (2), 153–164.
  4. Cipu, M. & Mignotte, M. (2009). On a conjecture on exponential Diophantine equations. Acta Arith., 140 (3), 251–269.
  5. Jeśmanowicz, L. (1955/56). Several remarks on Pythagorean numbers. Wiadom. Mat., 1 (2), 196–202 (in Polish).
  6. Laurent, M. (2008). Linear forms in two logarithms and interpolation determinants II. Acta Arith., 133 (4), 325–348.
  7. Laurent, M., Mignotte, M. & Nesterenko, Y. (1995). Formes linéaires en deux logarithmes et déterminants dínterpolation. J. Number Theory, 55 (2), 285–321.
  8. Le, M. (2003). A conjecture concerning the exponential Diophantine equation ax + by = cz. Acta Arith., 106 (4), 345–353.
  9. Le, M., Togbe, A. & Zhu, H. (2014). On a pure ternary exponential Diophantine equation. Publ. Math. Debrecen, 85 (3–4), 395–411.
  10. Lu, W. (1959). On the Pythagorean numbers 4n2 – 1, 4n and 4n2 + 1. Acta Sci. Natur. Univ. Szechuan, 2, 39–42 (in Chinese).
  11. Luca, F. (2012). On the system of Diophantine equations a2 + b2 = (m2 + 1)r and ax + by = (m2 + 1)z. Acta Arith., 153 (4), 373–392.
  12. Miyazaki, T. (2011). Terai’s conjecture on exponential Diophantine equations. Int. J. Number Theory, 7 (4), 981–999.
  13. Miyazaki, T. (2014). A note on the article by F. Luca “On the system of Diophantine equations a2 + b2 = (m2 + 1)r and ax + by = (m2 + 1)z” (Acta Arith. 153 (2012), 373–392). Acta Arith., 164 (1), 31–42.
  14. Scott, R. & Styer, R. (2016). Number of solutions to ax + by = cz. Publ. Math. Debrecen, 88 (1–2), 131–138.
  15. Terai, N. (1994). The Diophantine equation ax + by = cz. Proc. Japan Acad. Ser. A Math. Sci., 70 (1), 22–26.
  16. Terai, N. (1995). The Diophantine equation ax + by = cz II. Proc. Japan Acad. Ser. A Math. Sci., 71 (6), 109–110.
  17. Terai, N. (1996). The Diophantine equation ax + by = cz III. Proc. Japan Acad. Ser. A Math. Sci., 72 (1), 20–22.
  18. Terai, N. (1999). Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations. Acta Arith., 90 (1), 17–35.

Related papers

Cite this paper

Tekcan, A. (2019). Almost balancing, triangular and square triangular numbers. Notes on Number Theory and Discrete Mathematics, 25(1), 108-121, DOI: 10.7546/nntdm.2019.25.1.108-121.

Comments are closed.