Ahmet Tekcan
Notes on Number Theory and Discrete Mathematics
Print ISSN 1310–5132, Online ISSN 2367–8275
Volume 25, 2019, Number 1, Pages 108–121
DOI: 10.7546/nntdm.2019.25.1.108-121
Full paper (PDF, 247 Kb)
Details
Authors and affiliations
Ahmet Tekcan
Bursa Uludag University, Faculty of Science
Department of Mathematics, Bursa, Turkey
Abstract
In this work, we derive some new algebraic relations on all almost balancing numbers (of first and second type) and triangular (and also square triangular) numbers.
Keywords
- Balancing numbers
- Almost balancing numbers
- Triangular numbers
- Square triangular numbers
2010 Mathematics Subject Classification
- 11B37
- 11B39
References
- Bugeaud, Y. (1999). Linear forms in p-adic logarithms and the Diophantine equation (xn – 1)/(x – 1) = yq. Math. Proc. Cambridge Phil. Soc., 127 (3), 373–381.
- Cao, Z. & Dong, X. (2002). On the Terai-Jeśmanowicz conjecture. Publ. Math. Debrecen, 61 (3–4), 253–265.
- Cao, Z. & Dong, X. (2003). An application of a lower bound for linear forms in two logarithms to the Terai-Jeśmanowicz conjecture. Acta Arith., 110 (2), 153–164.
- Cipu, M. & Mignotte, M. (2009). On a conjecture on exponential Diophantine equations. Acta Arith., 140 (3), 251–269.
- Jeśmanowicz, L. (1955/56). Several remarks on Pythagorean numbers. Wiadom. Mat., 1 (2), 196–202 (in Polish).
- Laurent, M. (2008). Linear forms in two logarithms and interpolation determinants II. Acta Arith., 133 (4), 325–348.
- Laurent, M., Mignotte, M. & Nesterenko, Y. (1995). Formes linéaires en deux logarithmes et déterminants dínterpolation. J. Number Theory, 55 (2), 285–321.
- Le, M. (2003). A conjecture concerning the exponential Diophantine equation ax + by = cz. Acta Arith., 106 (4), 345–353.
- Le, M., Togbe, A. & Zhu, H. (2014). On a pure ternary exponential Diophantine equation. Publ. Math. Debrecen, 85 (3–4), 395–411.
- Lu, W. (1959). On the Pythagorean numbers 4n2 – 1, 4n and 4n2 + 1. Acta Sci. Natur. Univ. Szechuan, 2, 39–42 (in Chinese).
- Luca, F. (2012). On the system of Diophantine equations a2 + b2 = (m2 + 1)r and ax + by = (m2 + 1)z. Acta Arith., 153 (4), 373–392.
- Miyazaki, T. (2011). Terai’s conjecture on exponential Diophantine equations. Int. J. Number Theory, 7 (4), 981–999.
- Miyazaki, T. (2014). A note on the article by F. Luca “On the system of Diophantine equations a2 + b2 = (m2 + 1)r and ax + by = (m2 + 1)z” (Acta Arith. 153 (2012), 373–392). Acta Arith., 164 (1), 31–42.
- Scott, R. & Styer, R. (2016). Number of solutions to ax + by = cz. Publ. Math. Debrecen, 88 (1–2), 131–138.
- Terai, N. (1994). The Diophantine equation ax + by = cz. Proc. Japan Acad. Ser. A Math. Sci., 70 (1), 22–26.
- Terai, N. (1995). The Diophantine equation ax + by = cz II. Proc. Japan Acad. Ser. A Math. Sci., 71 (6), 109–110.
- Terai, N. (1996). The Diophantine equation ax + by = cz III. Proc. Japan Acad. Ser. A Math. Sci., 72 (1), 20–22.
- Terai, N. (1999). Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations. Acta Arith., 90 (1), 17–35.
Related papers
- Rayaguru, S. G. & Panda, G. K. (2020). A generalization to almost balancing and cobalancing numbers using triangular numbers. Notes on Number Theory and Discrete Mathematics, 26(3), 135-148.
- Tekcan, A., & Türkmen, E. Z. (2023). Almost balancers, almost cobalancers, almost Lucas-balancers and almost Lucas-cobalancers. Notes on Number Theory and Discrete Mathematics, 29(4), 682-694.
Cite this paper
Tekcan, A. (2019). Almost balancing, triangular and square triangular numbers. Notes on Number Theory and Discrete Mathematics, 25(1), 108-121, DOI: 10.7546/nntdm.2019.25.1.108-121.