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1 Introduction

A positive integer n is called a balancing number [1] if the Diophantine equation

1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (1)

holds for some positive integer r, which is called balancer corresponding to n. For example 6, 35,

204 are balancing numbers with balancers 2, 14, 84, respectively.
If n is a balancing number with balancer r, then from (1)

n2 =
(n+ r)(n+ r + 1)

2
and r =

−2n− 1 +
√

8n2 + 1

2
. (2)

So from (2), n is a balancing number if and only if n2 is a triangular number (Triangular
numbers denoted by Tn are the numbers of the form

Tn =
n(n+ 1)

2
(3)
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for n ≥ 1) and 8n2 + 1 is a perfect square. Though the definition of balancing numbers suggests
that no balancing number should be less than 2. Behera and Panda [1], while accepting 1 as a
balancing number (since it is the positive square root of the square triangular number 1), have set
B0 = 1, B1 = 6 and so on, using the symbol Bn for the n-th balancing number. To standardize
the notation at par with Fibonacci numbers, we relabel the balancing numbers by setting B0 =

0, B1 = 1, B2 = 6 and Bn+1 = 6Bn −Bn−1 for n ≥ 2.
Later Panda and Ray [13] defined that a positive integer n is called a cobalancing number if

the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r) (4)

holds for some positive integer r, which is called cobalancer corresponding to n. For example 2,

14, 84 are cobalancing numbers with cobalancers 1, 6, 35, respectively.
If n is a cobalancing number with cobalancer r, then from (4)

n(n+ 1) =
(n+ r)(n+ r + 1)

2
and r =

−2n− 1 +
√

8n2 + 8n+ 1

2
. (5)

So from (5), n is a cobalancing number if and only if n(n + 1) is a triangular number and
8n2 + 8n + 1 is a perfect square. Since 8(0)2 + 8(0) + 1 = 1 is a perfect square, we accept
0 as a cobalancing number, just like Behera and Panda [1] accepted 1 as a balancing number.
Cobalancing number is denoted by bn. Then, it can be easily seen that b0 = b1 = 0, b2 = 2 and
bn+1 = 6bn − bn−1 + 2 for n ≥ 2.

It is clear from (1) and (4) that every balancing number is a cobalancer and every cobalancing
number is a balancer, that is,Bn = rn+1 andRn = bn for n ≥ 1, whereRn is the n-th the balancer
and rn is the n-th cobalancer. Since Rn = bn, we get from (1) that

bn =
−(2Bn + 1) +

√
8B2

n + 1

2
and Bn =

2bn + 1 +
√

8b2n + 8bn + 1

2
. (6)

Thus from (6), Bn is a balancing number if and only if 8B2
n + 1 is a perfect square and bn is a

cobalancing number if and only if 8b2n + 8bn + 1 is a perfect square. So

Cn =
√

8B2
n + 1 and cn =

√
8b2n + 8bn + 1 (7)

are integers which are called the n-th Lucas–balancing number and n-th Lucas–cobalancing
number. For example 3, 17, 99 are Lucas–balancing numbers while 1, 7, 41 are Lucas–cobalancing
numbers (Note that C0 = c0 = 1).

Let α = 1 +
√

2 and β = 1−
√

2 be the roots of the characteristic equation for Pell numbers
which are the numbers defined by P0 = 0, P1 = 1 and Pn = 2Pn−1 +Pn−2 for n ≥ 2. Then Binet
formulas for all balancing numbers are

Bn =
α2n − β2n

4
√

2
, bn =

α2n−1 − β2n−1

4
√

2
− 1

2
, Cn =

α2n + β2n

2
and cn =

α2n−1 + β2n−1

2
. (8)

for n ≥ 1 (for further details on balancing numbers see also [5, 9, 10, 14, 17, 22]).
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Balancing numbers and their generalizations have been investigated by several authors from
many aspects. In [7, Theorem 4], Liptai proved that there is no Fibonacci balancing number
except 1, and in [8, Theorem 4] he proved that there is no Lucas balancing number. In [20],
Szalay considered the same problem and obtained some nice results by a different method. In [6],
Kovács, Liptai and Olajos extended the concept of balancing numbers to the (a, b)−balancing
numbers defined as follows: Let a > 0 and b ≥ 0 be coprime integers. If

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some positive integers n and r, then an + b is an (a, b)−balancing number. The sequence of
(a, b)−balancing numbers is denoted by B(a,b)

m for m ≥ 1. In [9], Liptai, Luca, Pintér and Szalay
generalized the notion of balancing numbers to numbers defined as follows: Let y, k, l ∈ Z+ such
that y ≥ 4. Then, a positive integer x with x ≤ y − 2 is called a (k, l)−power numerical center
for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

They studied the number of solutions of the equation above and proved several effective and
ineffective finiteness results for (k, l)−power numerical centers.

For positive integers k, x, let

Πk(x) = x(x+ 1) · · · (x+ k − 1).

It was proved in [6, Theorem 3 and Theorem 4] that the equation Bm = Πk(x) for fixed integer
k ≥ 2 has only infinitely many solutions and for k ∈ {2, 3, 4} all solutions were determined. In
[23, Theorem 1] Tengely, considered the case k = 5, that is, Bm = x(x+1)(x+2)(x+3)(x+4)

and proved that this Diophantine equation has no solution for m ≥ 0 and x ∈ Z.
Recently in [3], Davala and Panda considered supercobalancing numbers and in [4], they

considered the subbalancing numbers. In [2], Dash, Ota and Dash defined the t−balancing num-
bers for an integer t ≥ 2. A positive integer n is called a t−balancing number if the Diophantine
equation

1 + 2 + · · ·+ n = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t)

holds for some positive integer r, which is called t−balancer. In [21], Tekcan, Tayat and Özbek
derived the general terms of t−balancing numbers by solving the Diophantine equation 8x2−y2+
8x(1 + t) + (2t+ 1)2 = 0. In [11], Özkoç and Tekcan derived some new results on k−balancing
numbers, which are the numbers defined by Bk

0 = 0, Bk
1 = 1, Bk

n+1 = 6kBk
n − Bk

n−1 for n ≥ 1,
bk1 = 0, bk2 = 2, bkn+1 = 6kbkn − bkn−1 + 2 for n ≥ 2, Ck

0 = 1, Ck
1 = 3, Ck

n+1 = 6kCk
n − Ck

n−1 for
n ≥ 1 and ck1 = 1, ck2 = 7, ckn+1 = 6kckn − ckn−1 for n ≥ 2, where k is any positive integer (see
also [18, 19]).

Almost balancing numbers were first defined by Panda and Panda in [15]. A natural number
n is called an almost balancing number if the Diophantine equation

|[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− [1 + 2 + · · ·+ (n− 1)]| = 1 (9)

holds for some positive integer r, which is called the almost balancer. From (9), if nr + r(r+1)
2
−

(n−1)n
2

= 1, then n is called an almost balancing number of first type and r is called an almost
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balancer of first type and in this case

r =
−2n− 1 +

√
8n2 + 9

2
. (10)

For example 3, 18, 105 are almost balancing numbers of first type with almost balancers of first
type 1, 7, 43. If nr+ r(r+1)

2
− (n−1)n

2
= −1, then n is called an almost balancing number of second

type and r is called an almost balancer of second type and in this case

r =
−2n− 1 +

√
8n2 − 7

2
. (11)

For example 4, 11, 23 are almost balancing numbers of second type with almost balancers of
second type 1, 4, 9. From (11), we note that 8(1)2 − 7 = 12 and 8(2)2 − 7 = 52 are perfect
squares. So we accept 1 and 2 to be almost balancing numbers of second type.

Let B∗n denote the n-th almost balancing number of first type and let B∗∗n denote the n-th
almost balancing number of second type. Then from (10), B∗n is an almost balancing number of
first type if and only if 8(B∗n)2 +9 is a perfect square and (11), B∗∗n is an almost balancing number
of second type if and only if 8(B∗∗n )2 − 7 is a perfect square. Thus

C∗n =
√

8(B∗n)2 + 9 and C∗∗n =
√

8(B∗∗n )2 − 7 (12)

are integers which are called the n-th almost Lucas–balancing number of first type and the n-th
almost Lucas–balancing number of second type. It is easily seen that B∗n = 3Bn, C

∗
n = 3Cn and

B∗∗2n−1 = Bn−1 + Cn−1, B
∗∗
2n = −Bn + Cn, C

∗∗
2n−1 = 8Bn−1 + Cn−1, C

∗∗
2n = 8Bn − Cn for n ≥ 1

(Here we notice that B∗0 = 0, C∗0 = 3, B∗∗0 = 1 and C∗∗0 = −1).
Similarly in [16], Panda defined that a positive integer n is called an almost cobalancing

number if the Diophantine equation

|[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− (1 + 2 + · · ·+ n)| = 1 (13)

holds for some positive integer r, which is called an almost cobalancer. From (13), if nr +
r(r+1)

2
− n(n+1)

2
= 1, then n is called an almost cobalancing number of first type and r is called an

almost cobalancer of first type and in this case

r =
−2n− 1 +

√
8n2 + 8n+ 9

2
. (14)

For example 1, 4, 9 are almost cobalancing numbers of first type with almost cobalancers of
first type 1, 2, 4. If nr + r(r+1)

2
− n(n+1)

2
= −1, then n is called an almost cobalancing number of

second type and r is called an almost cobalancer of second type and in this case

r =
−2n− 1 +

√
8n2 + 8n− 7

2
. (15)

For example 7, 43, 253 are almost cobalancing numbers of second type with almost cobal-
ancers of second type 3, 18, 105. From (15), we note that 8(1)2 + 8(1) − 7 = 32 is a perfect
square. So we accept 1 as an almost cobalancing number of second type.
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Let b∗n denote the n-th almost cobalancing number of first type and let b∗∗n denote the n-th
almost cobalancing number of second type. Then from (14), b∗n is an almost cobalancing number
of first type if and only if 8(b∗n)2+8b∗n+9 is a perfect square and (15), b∗∗n is an almost cobalancing
number of second type if and only if 8(b∗∗n )2 + 8b∗∗n − 7 is a perfect square. Thus

c∗n =
√

8(b∗n)2 + 8b∗n + 9 and c∗∗n =
√

8(b∗∗n )2 + 8b∗∗n − 7 (16)

are integers that are called the n-th almost Lucas–cobalancing number of first type and the n-th
almost Lucas–cobalancing number of second type. It is easily seen that b∗2n = 2bn+1−bn, b∗2n−1 =

4bn − bn−1 + 1, c∗2n = cn+2 − 4cn+1, c
∗
2n−1 = cn+1 − 2cn and b∗∗n = 3bn + 1, c∗∗n = 3cn for n ≥ 1

(Here we notice that b∗0 = 0, c∗0 = 3, b∗∗0 = 1 and c∗∗0 = 3).

2 Results

In the present paper, we consider the relationship between almost balancing numbers (of first and
second type) and triangular and also square triangular numbers. Recall that there are infinitely
many triangular numbers that are also square numbers which are called square triangular num-
bers and are denoted by Sn. For example, 1, 36, 1225, 41616, . . . are square triangular numbers.
For the n-th square triangular number Sn, we can write

Sn = s2n =
tn(tn + 1)

2
, (17)

where sn and tn are the sides of the corresponding square and triangle. Binet formulas are

Sn =
α4n + β4n − 2

32
, sn =

α2n − β2n

4
√

2
and tn =

α2n + β2n − 2

4
(18)

for n ≥ 1. Here we accept that S0 = s0 = t0 = 0 (see also [1, 12]).
Thus we can give the following results.

Theorem 2.1. For triangular numbers, we have

1. The (
B∗

n+B
∗
n−1−3
6

)-th triangular number is (b∗2n−1−b∗2n−2−1)(b∗2n−1−b∗2n−2+1)

4
, that is,

TB∗
n+B∗

n−1−3

6

=
(b∗2n−1 − b∗2n−2 − 1)(b∗2n−1 − b∗2n−2 + 1)

4

for n ≥ 1.

2. The (
7B∗

n−B∗
n−1−3
6

)-th triangular number is 2B∗
2n+1+3b∗4n+1−3b∗4n−9

48
, that is,

T 7B∗
n−B∗

n−1−3

6

=
2B∗2n+1 + 3b∗4n+1 − 3b∗4n − 9

48

for n ≥ 1.

3. The (
B∗∗

2n+1−B∗∗
2n+B

∗∗
2n−1−B∗∗

2n−2−2
4

)-th triangular number is (b∗∗n −1)(b∗∗n +2)
9

, that is,

TB∗∗
2n+1−B∗∗

2n+B∗∗
2n−1−B∗∗

2n−2−2

4

=
(b∗∗n − 1)(b∗∗n + 2)

9

for n ≥ 1.
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4. The (
7B∗∗

2n+1−7B∗∗
2n−B∗∗

2n−1+B
∗∗
2n−2−2

4
)-th triangular number is (3B∗∗4n+3−3B∗∗4n+2 +2b∗∗2n+1−8)/

48, that is,

T 7B∗∗
2n+1−7B∗∗

2n−B∗∗
2n−1+B∗∗

2n−2−2

4

=
3B∗∗4n+3 − 3B∗∗4n+2 + 2b∗∗2n+1 − 8

48

for n ≥ 1.

Proof. (1) Applying (3), we easily deduce that

TB∗
n+B∗

n−1−3

6

=
(
B∗

n+B
∗
n−1−3
6

)(
B∗

n+B
∗
n−1−3
6

+ 1)

2

=
(B∗n +B∗n−1)

2 − 9

72

=

[
3(α

2n−β2n

4
√
2

) + 3(α
2n−2−β2n−2

4
√
2

)
]2
− 9

72

=
9(α2n − β2n + α2n−2 − β2n−2)2 − 288

2304

=
9[α2n−1(α + α−1)− β2n−1(β + β−1)]2 − 288

2304

=
9[2
√

2(α2n−1 + β2n−1)]2 − 288

2304

=
α4n−2 + β4n−2 − 6

32

=
α4n−2 − 2(αβ)2n−1 + β4n−2

32
− 1

4

= (
α2n−1 − β2n−1

4
√

2
)2 − 1

4

= (
α2n−1 − β2n−1

4
√

2
− 1

2
)(
α2n−1 − β2n−1

4
√

2
− 1

2
+ 1)

=
[(4bn − bn−1 + 1)− (2bn − bn−1)− 1][(4bn − bn−1 + 1)− (2bn − bn−1) + 1]

4

=
(b∗2n−1 − b∗2n−2 − 1)(b∗2n−1 − b∗2n−2 + 1)

4
.

The other cases can be proved similarly. �

We can give the general terms of Sn, sn and tn in terms of almost balancing numbers of first
and second type as follows:

Theorem 2.2. The general terms of Sn, sn and tn are

Sn = (
b∗2n+1 − b∗2n − b∗2n−1 + b∗2n−2

4
)2, n ≥ 1

sn =
B∗n
3
, n ≥ 1

tn =
C∗n − 3

6
, n ≥ 1
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or

Sn = (
b∗∗n+1 − b∗∗n

6
)2, sn =

B∗∗2n+1 −B∗∗2n
2

, tn =
C∗∗2n+1 − C∗∗2n − 2

4
for n ≥ 1.

Proof. From (18), we get

Sn =
α4n + β4n − 2

32

=
[α2n(α− α−1)− β2n(β − β−1)]2

128

=
(α2n+1 − β2n+1 − α2n−1 + β2n−1)2

128

=
[(α

2n+1−β2n+1

4
√
2

− 1
2
)− (α

2n−1−β2n−1

4
√
2

− 1
2
)]2

4

=
[(4bn+1 − bn + 1)− (2bn+1 − bn)− (4bn − bn−1 + 1) + (2bn − bn−1)]2

16

= (
b∗2n+1 − b∗2n − b∗2n−1 + b∗2n−2

4
)2

for n ≥ 1. Similarly we get

sn =
α2n − β2n

4
√

2
=

3(α
2n−β2n

4
√
2

)

3
=
B∗n
3

and

tn =
α2n + β2n − 2

4
=

3(α
2n+β2n

2
)− 3

6
=
C∗n − 3

6
for n ≥ 1. The other cases can be proved similarly. �

We can also give the general terms of square triangular numbers in terms of almost balancing
and almost Lucas–balancing numbers of first and second type as follows:

Theorem 2.3. The general term of Sn is

1. Sn = (
−2B∗

n−1+C
∗
n−C∗

n−1

6
)2 for n ≥ 1.

2. Sn =
(2B∗

n−1+C
∗
n−1−3)(4B∗

n+2B∗
n−1+C

∗
n−1+3)+12B∗

n

36
for n ≥ 1.

3. Sn = (
−2B∗∗

2n−1+2B∗∗
2n−2+C

∗∗
2n+1−C∗∗

2n−C∗∗
2n−1+C

∗∗
2n−2

4
)2 for n ≥ 1.

4. Sn = [(2B∗∗2n−1−2B∗∗2n−2+C∗∗2n−1−C∗∗2n−2−2)(4B∗∗2n+1−4B∗∗2n+2B∗∗2n−1−2B∗∗2n−2+C∗∗2n−1−
C∗∗2n−2 + 2) + 8B∗∗2n+1 − 8B∗∗2n]/16 for n ≥ 1.

Proof. Applying (18) yields that

Sn =
α4n + β4n − 2

32

= (
α2n − β2n

4
√

2
)2
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=

(
α2n(−3+2

√
2

2
√
2
− 1 +

√
2) + β2n(3+2

√
2

2
√
2
− 1−

√
2)

2

)2

=

α2n(−2(3−2
√
2)

4
√
2

+ 1−(3−2
√
2)

2
) + β2n(2(3+2

√
2)

4
√
2

+ 1−(3+2
√
2)

2
)

2

2

=

(
α2n(−2α

−2

4
√
2

+ 1−α−2

2
) + β2n(2β

−2

4
√
2

+ 1−β−2

2
)

2

)2

=

(
−2(α

2n−2−β2n−2

4
√
2

) + α2n+β2n

2
− α2n−2+β2n−2

2

2

)2

= (
−2B∗n−1 + C∗n − C∗n−1

6
)2

for n ≥ 1. The other cases can be proved similarly. �

Conversely, we can give the general terms of all almost balancing numbers of first and second
type in terms of sn and tn as follows:

Theorem 2.4. The general terms of all almost balancing numbers of first type are

B∗n = 3sn

b∗2n = −2sn+1 + sn + 2tn+1 − tn
b∗2n−1 = −4sn + sn−1 + 4tn − tn−1 + 1

C∗n = 6tn + 3

c∗2n = 3sn+1 − 5sn

c∗2n−1 = 5sn − 3sn−1

for n ≥ 1, and the general terms of all almost balancing numbers of second type are

B∗∗2n = −sn + 2tn + 1

B∗∗2n−1 = sn−1 + 2tn−1 + 1

b∗∗n = −3sn + 3tn + 1

C∗∗2n = 8sn − 2tn − 1

C∗∗2n−1 = 8sn−1 + 2tn−1 + 1

c∗∗n = 3sn + 3sn−1

for n ≥ 1.
Proof. It can be proved in the same way as Theorem 2.2 and Theorem 2.3. �

Thus, from Theorems 2.2 and 2.4, we construct a one–to–one correspondence between all
almost balancing numbers of first and second type and Sn, sn, tn.

We can also give the sum of first n terms of Sn, sn and tn in terms of almost balancing numbers
of first and second type as follows:
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Theorem 2.5. The sums of first n−terms of Sn, sn and tn are
n∑
i=1

Si =
33(B∗n)2 − (B∗n−1)

2 − 18n+ 9

288

n∑
i=1

si =
5B∗n −B∗n−1 − 3

12

n∑
i=1

ti =
7B∗n −B∗n−1 − 6n− 3

12

for n ≥ 1, or
n∑
i=1

Si =
824(b∗∗n )2 − 328b∗∗n b

∗∗
n−1 + 660b∗∗n + 32(b∗∗n−1)

2 − 132b∗∗n−1 − 72n+ 168

1152

n∑
i=1

si =
5B∗∗2n+1 − 5B∗∗2n −B∗∗2n−1 +B∗∗2n−2 − 2

8

n∑
i=1

ti =
7B∗∗2n+1 − 7B∗∗2n −B∗∗2n−1 +B∗∗2n−2 − 4n− 2

8

for n ≥ 1.
Proof. For the square triangular numbers Sn we have Sn = 34Sn−1 − Sn−2 + 2. Hence

S2 = 34S1 − S0 + 2 (19)

S3 = 34S2 − S1 + 2

· · ·
Sn−1 = 34Sn−2 − Sn−3 + 2

Sn = 34Sn−1 − Sn−2 + 2.

If we sum both sides of (19), we obtain

S2 + S3 + · · ·+ Sn = 34(S1 + S2 + · · ·+ Sn−1)− (S0 + S1 + · · ·+ Sn−2) + 2(n− 1).

Hence −S1 + (S1 + S2 + · · ·+ Sn) = 34(S1 + S2+ · · ·+ Sn)− 34Sn− [(S1 + S2 + · · ·+ Sn)−
Sn−1−Sn]+2n−2. Since S1 = 1, we get−1+33Sn −Sn−1−2(n−1) = 32(S1+S2+ · · ·+Sn)

and hence
S1 + S2 + · · ·+ Sn =

33Sn − Sn−1 − 2n+ 1

32
.

Note that Sn = (
b∗2n+1−b∗2n−b∗2n−1+b

∗
2n−2

4
)2 by Theorem 2.2. We also get b∗2n+1 − b∗2n − b∗2n−1 +

b∗2n−2 = 4B∗
n

3
for n ≥ 1. So we conclude that

S1 + S2 + · · ·+ Sn =
33(B∗n)2 − (B∗n−1)

2 − 18n+ 9

288

for n ≥ 1. Again since Sn = (
b∗∗n+1−b∗∗n

6
)2 by Theorem 2.2, we get

S1 + S2 + · · ·+ Sn =
33(

b∗∗n+1−b∗∗n
6

)2 − (
b∗∗n −b∗∗n−1

6
)2 − 2n+ 1

32
(20)
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=

{
33(b∗∗n+1)

2 − 66b∗∗n+1b
∗∗
n + 32(b∗∗n )2 + 2b∗∗n b

∗∗
n−1 − (b∗∗n−1)

2 − 72n+ 36
}

1152
.

Taking b∗∗n+1 → 6b∗∗n − b∗∗n−1 + 2 in (20), we get

S1 + S2 + · · ·+ Sn =

{
33(b∗∗n+1)

2 − 66b∗∗n+1b
∗∗
n + 32(b∗∗n )2 + 2b∗∗n b

∗∗
n−1 − (b∗∗n−1)

2 − 72n+ 36
}

1152

=
824(b∗∗n )2 − 328b∗∗n b

∗∗
n−1 + 660b∗∗n + 32(b∗∗n−1)

2 − 132b∗∗n−1 − 72n+ 168

1152

for n ≥ 1 as we claimed. The other sums can be proved similarly. �

Now we want to construct a connection between triangular and square triangular numbers.
For this reason, we have to determine when the equality

Tm = Sn

holds for some positive integer m. The answer is given below.

Theorem 2.6. For the triangular and square triangular numbers, we have

1. The (
B∗

n+1−B∗
n−1−6

12
)-th triangular number is the n-th square triangular number, that is,

TB∗
n+1−B∗

n−1−6

12

= Sn

for n ≥ 1.

2. The (
2B∗

n+3b∗2n−1−3b∗2n−2−3
6

)-th triangular number is the n-th square triangular number, that
is,

T 2B∗
n+3b∗2n−1−3b∗2n−2−3

6

= Sn

for n ≥ 1.

3. The (
B∗∗

2n+3−B∗∗
2n+2−B∗∗

2n−1+B
∗∗
2n−2−4

8
)-th triangular number is the n-th square triangular num-

ber, that is,
TB∗∗

2n+3−B∗∗
2n+2−B∗∗

2n−1+B∗∗
2n−2−4

8

= Sn

for n ≥ 1.

4. The (
3B∗∗

2n+1−3B∗∗
2n+2b∗∗n −2
6

)-th triangular number is the n-th square triangular number, that
is,

T 3B∗∗
2n+1−3B∗∗

2n+2b∗∗n −2

6

= Sn

for n ≥ 1.

Proof. (1) From (3), we deduce that

TB∗
n+1−B∗

n−1−6

12

=
(
B∗

n+1−B∗
n−1−6

12
)(
B∗

n+1−B∗
n−1−6

12
+ 1)

2

=
(B∗n+1 −B∗n−1)2 − 36

288
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=

[
3(α

2n+2−β2n+2

4
√
2

)− 3(α
2n−2−β2n−2

4
√
2

)
]2
− 36

288

=
9[α2n(α2 − α−2) + β2n(−β2 + β−2)]2 − 1152

9216

=
9[4
√

2(α2n + β2n)]2 − 1152

9216

=
288[α4n + 2(αβ)2n + β4n]− 1152

9216

=
288(α4n + β4n)− 576

9216

=
α4n + β4n − 2

32

= Sn

by (18). The other cases can be proved similarly. �

Finally for the perfect squares, we can give the following result.

Theorem 2.7. For the perfect squares, we have

1. 8(sn−1 + tn−1)
2 + 8(sn−1 + tn−1) + 1 is a perfect square and is√

8(sn−1 + tn−1)2 + 8(sn−1 + tn−1) + 1 =
B∗n +B∗n−1

3

for n ≥ 1, or√
8(sn−1 + tn−1)2 + 8(sn−1 + tn−1) + 1 =

B∗∗2n+1 −B∗∗2n +B∗∗2n−1 −B∗∗2n−2
2

for n ≥ 1.

2. Sn − tn − 2sn(sn−1 + tn−1) is a perfect square and is√
Sn − tn − 2sn(sn−1 + tn−1) =

b∗∗2n−1 − b∗∗2n−2 − 1

2

for n ≥ 1, or √
Sn − tn − 2sn(sn−1 + tn−1) =

b∗∗n − 1

3
for n ≥ 1.

3. (sn−1 + tn−1)
2 + tn + 2sn(sn−1 + tn−1) is a perfect square and is√

(sn−1 + tn−1)2 + tn + 2sn(sn−1 + tn−1) =
2C∗n − 6b∗2n−1 + 6b∗2n−2

12

for n ≥ 1, or√
(sn−1 + tn−1)2 + tn + 2sn(sn−1 + tn−1) =

3C∗∗2n+1 − 3C∗∗2n − 4b∗∗n − 2

12

for n ≥ 1.
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4. s2n+s2n−1+t2n−1

2
is a perfect square and is√

s2n + s2n−1 + t2n−1
2

=
2B∗n

3

for n ≥ 1, or √
s2n + s2n−1 + t2n−1

2
= B∗∗2n+1 −B∗∗2n

for n ≥ 1.

5. If n is odd, then tn is a perfect square and is
√
tn =

c∗n − c∗n−1
2

for n ≥ 1, or
√
tn =

c∗∗n+1
2

3
for n ≥ 1. If n is even, then tn + 1 is a perfect square and is

√
tn + 1 =

C∗n
2

3
for n ≥ 2, or

√
tn + 1 =

C∗∗n+1 − C∗∗n
2

for n ≥ 2.

Proof. (1) Since sn = α2n−β2n

4
√
2

and tn = α2n+β2n−2
4

by (18), we get√
8(sn−1 + tn−1)2 + 8(sn−1 + tn−1) + 1

=

√
8(
α2n−2 − β2n−2

4
√

2
+
α2n−2 + β2n−2 − 2

4
)2 + 8(

α2n−2 − β2n−2

4
√

2
+
α2n−2 + β2n−2 − 2

4
) + 1

=

√
8(
α2n−1 − β2n−1

4
√

2
− 1

2
)2 + 8(

α2n−1 − β2n−1

4
√

2
− 1

2
) + 1

=

√
α4n−2 + β4n−2

4
− 1

2

=
α2n−1 + β2n−1

2

=
α2n−1(2

√
2) + β2n−1(2

√
2)

4
√

2

=
α2n−1(α + α−1) + β2n−1(−β − β−1)

4
√

2

=
α2n − β2n

4
√

2
+
α2n−2 − β2n−2

4
√

2

=
3(α

2n−β2n

4
√
2

) + 3(α
2n−2−β2n−2

4
√
2

)

3

=
B∗n +B∗n−1

3
for n ≥ 1. The other cases can be proved similarly. �
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